

Decay constants and spectroscopy of mesons in lattice QCD using domain-wall fermions

Brendan Fahy (KEK) G. Cossu, S.Hashimoto, T. Kaneko, J. Noaki, M. Tomii JLQCD Collaboration

July 14, 2015

Introduction

Masses

Decay Constants

Project Overview

- ► N_f = 2 + 1 simulations on 15 Esnambles with 10,000 MD times for each.
- ▶ Simulations at three lattice spacing $a^{-1} \approx 2.4, 3.6$ and 4.5 GeV
- ► Pion masses from 230 MeV to 500 MeV
- Domain-Wall (Möbius) fermions
 - ► Good chiral symmetry with $m_{\text{res}} \ll m_{ud}$. $m_{\text{res}} \approx 1 MeV$ on our coarsest lattice; ≈ 0 on the finer lattices.
 - Small residual mass is achieved by the Möbius representation and using stout link-smearing
 - Simpler Renormalization $Z_V = Z_A$
 - Topological charge not fixed
- Light and charmed meson correlators produced using domian-wall to analyze masses and pseudoscalar decay constants.
- Fine lattices for heavy quarks: Are the discretization effect under control at the level of a few MeV

Introduction

Masses

Decay Constants

Related talks using the same ensembles

- ► Jul 14th
 - Fukaya 17:30 Extracting the eta-prime meson mass from gluonic correlators in lattice QCD
- ► Jul 15th
 - Tomii 16:30 Analysis of short distance current correlators using OPE
 - Nakayama 16:50 Charmonium current-current correlators with Mobius domain-wall fermion
 - Hashimoto POSTER Stochastic calculation of the QCD Dirac operator spectrum with Mobius domain-wall fermion
- Jul 16th
 - Suzuki 11:20 D meson semileptonic decays from lattice QCD with chiral fermions

Ensambles

Fahy (KEK)

Introduction

Masses

Decay Constants

Our ensembles (Left) compared to various other groups (Right) image from Hoelbling, 1410.3403

- Red = Two ensembles at different values of m_s
- Blue = Two ensembles at different volumes
- Magenta = One ensemble

Ensambles

Fahy (KEK)

Introduction

Masses

Decay Constants

	L	$\#m_s$	m_{π} [MeV]	$m_{\pi}L$
$\beta = 4.17$	$32^3 \times 64$	1	230	3.0
$1/a = 2.45 {\rm GeV}$	(L = 2.6 fm)	2	310	4.0
		2	400	5.2
		2	500	6.5
	$48^3 \times 96$	1	230	4.4
	(L=3.9 fm)			
$\beta = 4.35$	$48^3 \times 96$	2	300	3.9
$1/a = 3.61 {\rm GeV}$	(L = 2.6 fm)	2	410	5.4
		2	500	6.6
$\beta = 4.47$	$64^3 \times 128$	2	285	4.1
$1/a = 4.50 {\rm GeV}$	(L = 2.1 fm)			

Table: Lattices

10,000 MD times for each ensemble.

Ensambles

Fahy (KEK)

Introduction

Masses

Decay Constants

	L	$\#m_s$	m_{π} [MeV]	$m_{\pi}L$
$\beta = 4.17$	$32^3 \times 64$	1	230	3.0
$1/a = 2.45 {\rm GeV}$	(L = 2.6 fm)	2	310	4.0
		2	400	5.2
		2	500	6.5
	$48^3 \times 96$	1	230	4.4
	(L=3.9 fm)			
$\beta = 4.35$	$48^3 \times 96$	2	300	3.9
$1/a = 3.61 {\rm GeV}$	(L = 2.6 fm)	2	410	5.4
		2	500	6.6
$\beta = 4.47$	$64^3 \times 128$	2	285	4.1
1/a = 4.50 GeV	(L = 2.1 fm)			

Table: Lattices

10,000 MD times for each ensemble.

Introduction

Masses

Decay Constants

Measurements

- Correlators measured on each lattice for both smeared and unsmeared point sources
- Gauge invariant smearing of two different types for each source/sink
- Measurements done using 4 source points on 100 configurations for each ensemble
- Fits performed to two correlators simultaneously using the combination unsmeared-smeared and smeared-smeared to reduce variance of the unsmeared source
- ► Charmed correlator measured using 3 values of the charm mass which were then interpolated in m_c to match the masss of the spin averaged cc̄

Scale Setting using Wilson Flow (t_0)

Lattice 2015

Masses

Decay Constants

- Scale was set using t₀ from wilson flow
- Using $t_0 = 0.1465$ fm (BMW 2012)
 - $\blacktriangleright \ \beta = 4.17 \longrightarrow a^{-1} = 2453.1 \pm 4.0 \text{ MeV}$
 - $\beta = 4.35 \longrightarrow a^{-1} = 3609.7 \pm 8.9 \text{ MeV}$
 - $\bullet \quad \beta = 4.47 \longrightarrow a^{-1} = 4496.1 \pm 9.2 \text{ MeV}$

Introduction

Masses

Decay Constants

Physical Limit

- We have many ensembles and would like the physical point extrapolation
- Simple linear fits were used to interpolate/extrapolate to the physical point.
- $\blacktriangleright\,$ Mistuning of the strange mass was interpolated using $2m_K^2-m_\pi^2 \propto m_s$
- Extrapolation to continuum limit in a^2 .
- Linear extrapolation in m_{π}^2 .
- No cross terms introduced.
- Higher order χPT fitting (work in progress)

D meson masses

Fahy (KEK)

Introduction

Masses

Decay Constants

$\beta = 4.17$ $\beta = 4.35$ 1960 $\beta = 4.47$ PDG linear fit at a^2 for beta=4.17 1940 linear fit at a^2=0 χ^2 /dof:1.7 [MeV] ¹⁹²⁰ ^D [MeV] 1880 1860 1840 50000 100000 150000 200000 250000 300000 350000 m_{π}^{2} [MeV^2]

Physical point extrapolation $m_D = 1871 \pm 10$ MeV PDG 1868.02 ± 0.10 MeV

Introduction

Masses

Decay Constants

D_s meson masses

Before m_s interpolation

Physical point extrapolation $m_{D_s} = 1963.8 \pm 5.5$ MeV PDG 1968.30 ± 0.11 MeV

 D_s meson masses

Introduction

Masses

Decay Constants

Physical point extrapolation $m_{D_s} = 1963.8 \pm 5.5$ MeV PDG 1968.30 ± 0.11 MeV

Introduction

Masses

Decay Constants

Pseudoscalar decay constants

• Because we have chiral fermions the psudoscalar decay constants can be computed using the PCAC relation $m_{\pi}Z_A\langle 0|A_4|\pi\rangle = (m_g + m_g)\langle 0|P|\pi\rangle.$

Fit correlator to
$$C = \underbrace{\frac{1}{2m_{\pi}} \langle 0|P|\pi \rangle \langle \pi|P|0 \rangle}_{A_{PP}} e^{-m_{\pi}t}$$

- Decay constant computed using $f_{\pi} = (m_q + m'_q) \sqrt{\frac{2A_{PP}}{m_{\pi}^3}}$. Residual mass is added to the quark mass (minor effect of 1 MeV or less)
- ► This does not require renormalization factor Z_A

Pion pseudoscalar decay constants

Fahy (KEK)

Lattice 2015

Masses

Decay Constants

One-Loop chiral log fit (with fixed $F_{\pi} = 130 \text{ MeV}$) for $m_{\pi} < 400 \text{ MeV}$ vs Linear extrapolation. Difference of 2.2 MeV Physical point linear extrapolation $f_{\pi} = 128.8 \pm 4.1^{+0}_{-2.2} \text{ MeV}$ PDG $130.41 \pm 0.2 \text{ MeV}$

Kaon pseudoscalar decay constants Before *m_s* interpolation

Physical point extrapolation $f_K = 154.0 \pm 3.9$ MeV. PDG 156.1 ± 0.8 MeV

Lattice 2015

Fahy (KEK)

Introduction Masses Decay Constants

Kaon pseudoscalar decay constants After m_s interpolation

Fahy (KEK)

Lattice 2015

Masses

Decay Constants

Physical point extrapolation $f_K = 154.0 \pm 3.9$ MeV. PDG 156.1 ± 0.8 MeV Ratio $f_K/f_{\pi} = 1.196 \pm 0.053$. PDG 1.1970 ± 0.0065

Physical point extrapolation $f_D = 211.4 \pm 5.6$ MeV

Lattice 2015

Masses

Decay

```
Lattice 2015
Fahy (KEK)
```

Introduction

Masses

Decay Constants

D_s pseudoscalar decay constants

Before m_s interpolation

Physical point extrapolation $f_{D_s} = 245.0 \pm 4.4$ MeV

Physical point extrapolation $f_{D_s} = 245.0 \pm 4.4$ MeV Ratio $f_{D_s}/f_D = 1.159 \pm 0.037$

Lattice 2015

Fahy (KEK)

Introduction Masses Decay

Constants

Introduction

Masses

Decay Constants

Conclusions and Future work

- ► First physical results from the JLQCD 2+1 domain wall ensembles with lattice spacing 1/a = 2.45 4.5 GeV.
- ► We obtain the values of light and charmed decay constants with errors of order 1% after continuum extrapolation.
- ► Chiral fermions allow for computation of pseudoscalar decay constants without the need of renormalization factor Z_A. However, the calculation of Z_V, Z_A is on-going (see Tomii's talk)
- ► No substantial discretization effect for charm is observed.
- ► χPT analysis ongoing. Though no substantial effect is expected.
- ► Include heavier quark masses to extrapolate to *B* physics
- More physical quantities, including semi-leptonic *D* decays (on-going, see Suzuki's talk)

Fahy (KEK)

Introduction

Masses

Decay Constants

Thank You.

Fahy (KEK)

Introduction

Masses

Decay Constants

Backup Slides

Topological charge for $a^{-1} = 2.4 \text{ GeV}$ (left) and $a^{-1} = 3.6 \text{ GeV}$ (right)

100 200

-5 -10 4

6

8 10 traj. length (x10³) 14 0

50 100

12

-5

-10 L

2

6 8 10 0

traj. length (x103)