Gauge-invariant implementation of the $U(1)$-Higgs model on optical lattices

Alexei Bazavov with
Yannick Meurice (UI), Shan-Wen Tsai (UCR), Judah Unmuth-Yockey (UI), Jin Zhang (UCR)

University of California, Riverside/University of lowa

July 18, 2015

Motivation

Fermi-Hubbard model

$U(1)$-Higgs model

Bose-Hubbard model realization

Conclusion

Motivation

- Technology: Ultra-cold atoms trapped in optical lattices (counter propagating laser beams) ${ }^{1}$
- Possibility of tunable interactions
- Goal: Quantum simulator for lattice gauge theory
- Explicit gauge fields, inexact gauge invariance (most of the proposals)
- Gauge-invariant effective actions (our proposal)

[^0]
Fermi-Hubbard model

$$
H=-t \sum_{\langle i j\rangle, \alpha}\left(c_{i, \alpha}^{\dagger} c_{j, \alpha}+\text { h.c. }\right)+U \sum_{i=1}^{N} n_{i \uparrow} n_{i \downarrow}
$$

- t-tunneling between nearest neighbors
- U - onsite Coulomb repulsion

U

Fermi-Hubbard model

- In the strong-coupling limit $U \gg t$ at half-filling Fermi-Hubbard model is equivalent to spin- $1 / 2$ quantum Heisenberg model

$$
H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}, \quad J=4 t^{2} / U
$$

- Introduce new fermion fields $f_{i \alpha}, \mathbf{S}_{i}=\frac{1}{2} f_{i \alpha}^{\dagger} \vec{\sigma}_{\alpha \beta} f_{i \beta}$ (with a constraint $f_{i \alpha}^{\dagger} f_{i \alpha}=1$):

$$
H=-\frac{1}{2} J \sum_{\langle i j\rangle} f_{i \alpha}^{\dagger} f_{j \alpha} f_{j \beta} f_{i \beta}^{\dagger}+J \sum_{\langle i j\rangle}\left(\frac{1}{2} n_{i}-\frac{1}{4} n_{i} n_{j}\right)
$$

- This model has a local $S U(2)$ symmetry ${ }^{2}$

[^1]
Fermi-Hubbard model

- After particle-hole transformation in the spin-down operator:

$$
f_{i, \uparrow}, f_{i, \uparrow}^{\dagger} \rightarrow \Psi_{x, 1}, \Psi_{x, 1}^{\dagger}, \quad f_{i, \downarrow}, f_{i, \downarrow}^{\dagger} \rightarrow \Psi_{x, 2}^{\dagger}, \Psi_{x, 2}
$$

the Heisenberg Hamiltonian can be written in terms of "mesons" and "baryons"

$$
\begin{gathered}
H=\frac{J}{8} \sum_{x, \hat{i}}\left[M_{x} M_{x+\hat{i}}+2\left(B_{x}^{\dagger} B_{x+\hat{i}}+B_{x+\hat{i}}^{\dagger} B_{x}\right)\right]-\frac{J d}{4} \sum_{x}\left(M_{x}-\frac{1}{2}\right) \\
M_{x}=\sum_{a=1,2} \Psi_{x, a}^{\dagger} \Psi_{x, a}, \quad B_{x}=\sum_{a, b=1,2} \frac{\varepsilon_{a b}}{2} \Psi_{x, a} \Psi_{x, b}=\Psi_{x, 1} \Psi_{x, 2}
\end{gathered}
$$

$U(1)$-Higgs model in $1+1 \mathrm{D}$

The partition function:

$$
\begin{gathered}
Z=\int D \phi^{\dagger} D \phi D U e^{-S}, \\
S=S_{g}+S_{h}+S_{\lambda}, \\
S_{g}=-\beta_{p l} \sum_{x} \operatorname{Re}\left[U_{p l, x}\right], \\
S_{h}=-\kappa_{\tau} \sum_{x}\left[\mathrm{e}^{\mu} \phi_{x}^{\dagger} U_{x, \hat{\tau}} \phi_{x+\hat{\tau}}+\mathrm{e}^{-\mu} \phi_{x+\hat{\tau}}^{\dagger} U_{x, \hat{\tau}}^{\dagger} \phi_{x}\right] \\
-\kappa_{s} \sum_{x}\left[\phi_{x}^{\dagger} U_{x, \hat{s}} \phi_{x+\hat{s}}+\phi_{x+\hat{s}}^{\dagger} U_{x, \hat{s}}^{\dagger} \phi_{x}\right], \\
S_{\lambda}=\lambda \sum_{x}\left(\phi_{x}^{\dagger} \phi_{x}-1\right)^{2}+\sum_{x} \phi_{x}^{\dagger} \phi_{x}
\end{gathered}
$$

$U(1)$-Higgs model in $1+1 \mathrm{D}$

Limiting cases (isotropic, $\kappa_{s}=\kappa_{\tau}=\kappa$):

- $\kappa=0: U(1)$ pure gauge theory
- $\lambda<\infty, \beta_{p l}=\infty: \phi^{4}$ theory
- $\lambda=\infty, \beta_{p l}=\infty: O(2)$ model, Kosterlitz-Thouless transition

$U(1)$-Higgs model in $1+1 \mathrm{D}$

- In the hopping part of the action S_{h}, we can separate the compact and non-compact variables

$$
\begin{aligned}
S_{h}= & -2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right| \sum_{x} \cos \left(\theta_{x+\hat{\tau}}-\theta_{x}+A_{x, \hat{\tau}}-i \mu\right) \\
& -2 \kappa_{s}\left|\phi_{x}\right|\left|\phi_{x+\hat{s}}\right| \sum_{x} \cos \left(\theta_{x+\hat{s}}-\theta_{x}+A_{x, \hat{s}}\right)
\end{aligned}
$$

and then Fourier transform the Boltzmann weight, i.e.

$$
\begin{aligned}
& \exp \left[2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right| \cos \left(\theta_{x+\hat{\tau}}-\theta_{x}+A_{x, \hat{\tau}}-i \mu\right)\right] \\
= & \sum_{n=-\infty}^{\infty} I_{n}\left(2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right|\right) \exp \left[i n\left(\theta_{x+\hat{\tau}}-\theta_{x}+A_{x, \hat{\tau}}-i \mu\right)\right]
\end{aligned}
$$

$U(1)$-Higgs model in $1+1 \mathrm{D}$

- After integrating over the gauge field, the effective action for the gauge and hopping part

$$
\begin{aligned}
& e^{-S_{e f f}}=\sum_{\left\{m_{\square}\right\}}\left[\prod _ { \square } I _ { m _ { \square } } (\beta _ { p l }) \prod _ { x } \left(I_{n_{x, \hat{s}}}\left(2 \kappa_{s}\left|\phi_{x}\right|\left|\phi_{x+\hat{s}}\right|\right)\right.\right. \\
&\left.\left.\times I_{n_{x, \hat{\tau}}}\left(2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right|\right) \exp \left(\mu n_{x, \hat{\tau}}\right)\right)\right]
\end{aligned}
$$

- Using the hopping parameter expansion for $\kappa=\kappa_{s}=\kappa_{\tau}$ and with $M_{x} \equiv \phi_{x}^{\dagger} \phi_{x}$:

$$
\begin{aligned}
S_{e f f}= & \sum_{\langle x y\rangle}\left(-\kappa^{2} M_{x} M_{y}+\frac{1}{4} \kappa^{4}\left(M_{x} M_{y}\right)^{2}\right) \\
& -2 \kappa^{4} \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)} \sum_{\square(x y z w)} M_{x} M_{y} M_{z} M_{w}+O\left(\kappa^{6}\right) \\
Z= & \int D \phi^{\dagger} D \phi D U e^{-S} \simeq \int D M e^{-S_{e f f}(M)-S_{\lambda}(M)}
\end{aligned}
$$

Hopping parameter expansion

- The expectation value of the hopping term

$$
\left\langle L_{\phi}\right\rangle=\left\langle\operatorname{Re}\left\{\phi_{x}^{\dagger} U_{x, \hat{\nu}} \phi_{x+\hat{\nu}}\right\}\right\rangle
$$

- For $\beta_{p l} \rightarrow \infty$ one can relate

$$
\left\langle L_{\phi}\right\rangle_{Z_{\kappa, \lambda}}=\frac{1}{2 V} \frac{d}{d \kappa} \ln \left(\frac{Z_{\kappa, \lambda}}{Z_{\lambda}}\right)
$$

where $Z_{\lambda} \equiv Z_{\kappa=0, \lambda}$

Hopping parameter expansion

- The hopping parameter expansion ${ }^{3}$

$$
\begin{aligned}
\frac{Z_{\kappa, \lambda}}{Z_{\lambda}} & =1+V d \gamma_{2}^{2} \kappa^{2} \\
& +V d\left\{\left[\frac{1}{2}(V d-4 d+1)+(d-1)\right] \gamma_{2}^{4}+(2 d-1) \gamma_{2}^{2} \gamma_{4}+\frac{1}{4} \gamma_{4}^{2}\right\} \kappa^{4} \\
& +V d\left\{\left[\frac{1}{6}(V d-1)(V d-2)-\frac{2}{3}(d-1)(2 d-1)-(2 d-1)^{2}-(2 d-1)(V d-6 d+2)\right.\right. \\
& +2(d-1)(2 d-3)+(d-1)(V d-8 d+4)] \gamma_{2}^{6} \\
& +\left(2(d-1)+(2 d-1)^{2}+\frac{1}{4}(V d-4 d+1)\right) \gamma_{2}^{2} \gamma_{4}^{2} \\
& +8(d-1)^{2} \gamma_{2}^{2} \gamma_{4}+(2 d-1)(V d-6 d+2) \gamma_{2}^{4} \gamma_{4}+\frac{2}{3}(2 d-1)(d-1) \gamma_{2}^{3} \gamma_{6} \\
& \left.+\frac{1}{2}(2 d-1) \gamma_{2} \gamma_{4} \gamma_{6}+\frac{1}{36} \gamma_{6}^{2}\right\} \kappa^{6}
\end{aligned}
$$

where $\gamma_{2 k} \equiv\left\langle\rho^{2 k}\right\rangle_{Z_{\lambda}}$.

Hopping parameter expansion

- The hopping parameter expansion ${ }^{4}$

$$
\begin{aligned}
\frac{Z_{\kappa, \lambda}}{Z_{\lambda}} & =1+V d \gamma_{2}^{2} \kappa^{2} \\
& +V d\left\{\left[\frac{1}{2}(V d-4 d+1)+(d-1)\right] \gamma_{2}^{4}+(2 d-1) \gamma_{2}^{2} \gamma_{4}+\frac{1}{4} \gamma_{4}^{2}\right\} \kappa^{4} \\
& +V d\left\{\left[\frac{1}{6}(V d-1)(V d-2)-\frac{2}{3}(d-1)(2 d-1)-(2 d-1)^{2}-(2 d-1)(V d-6 d+2)\right.\right. \\
& +2(d-1)(2 d-3)+(d-1)(V d-8 d+4) \\
& \left.+\frac{4}{3}(d-1)(d-2)\right] \gamma_{2}^{6}+\left(2(d-1)+(2 d-1)^{2}+\frac{1}{4}(V d-4 d+1)\right) \gamma_{2}^{2} \gamma_{4}^{2} \\
& +\left(8(d-1)^{2}+(2 d-1)(V d-6 d+2)\right) \gamma_{2}^{4} \gamma_{4}+\frac{2}{3}(2 d-1)(d-1) \gamma_{2}^{3} \gamma_{6} \\
& \left.+\frac{1}{2}(2 d-1) \gamma_{2} \gamma_{4} \gamma_{6}+\frac{1}{36} \gamma_{6}^{2}\right\} \kappa^{6}
\end{aligned}
$$

where $\gamma_{2 k} \equiv\left\langle\rho^{2 k}\right\rangle z_{\lambda}$.

Hopping parameter expansion

- The hopping parameter expansion ${ }^{5}$

$$
\begin{aligned}
\frac{Z_{\kappa, \lambda}}{Z_{\lambda}} & =1+V d \gamma_{2}^{2} \kappa^{2} \\
& +V d\left\{\left[\frac{1}{2}(V d-4 d+1)+(d-1) \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}\right] \gamma_{2}^{4}+(2 d-1) \gamma_{2}^{2} \gamma_{4}+\frac{1}{4} \gamma_{4}^{2}\right\} \kappa^{4} \\
& +V d\left\{\left[\frac{1}{6}(V d-1)(V d-2)-\frac{2}{3}(d-1)(2 d-1)-(2 d-1)^{2}-(2 d-1)(V d-6 d+2)\right.\right. \\
& +2(d-1)(2 d-3)\left(\frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}\right)^{2}+(d-1)(V d-8 d+4) \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)} \\
& \left.+\frac{4}{3}(d-1)(d-2)\left(\frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}\right)^{3}\right] \gamma_{2}^{6}+\left(2(d-1) \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}+(2 d-1)^{2}+\frac{1}{4}(V d-4 d+1)\right) \gamma_{2}^{2} \gamma_{4}^{2} \\
& +\left(8(d-1)^{2} \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}+(2 d-1)(V d-6 d+2)\right) \gamma_{2}^{4} \gamma_{4}+\frac{2}{3}(2 d-1)(d-1) \gamma_{2}^{3} \gamma_{6} \\
& \left.+\frac{1}{2}(2 d-1) \gamma_{2} \gamma_{4} \gamma_{6}+\frac{1}{36} \gamma_{6}^{2}\right\} \kappa^{6}
\end{aligned}
$$

where $\gamma_{2 k} \equiv\left\langle\rho^{2 k}\right\rangle_{Z_{\lambda}}$.

MC tests at small λ

- At small λ the quartic term is a perturbation, Gaussian proposal probability can be used ${ }^{6}$
- To scan arbitrary λ - Biased-Metropolis Heatbath ${ }^{7}$ (ongoing work)

[^2]
MC tests at small λ

- Left: L_{ϕ} at $\lambda=0.05$ and 0.1 for $\beta=20$ compared with the $O\left(\kappa^{3}\right)$ and $O\left(\kappa^{5}\right)$ expansions
- Right: L_{ϕ} at $\lambda=0.1$ for $\beta=0.02-20$ compared with the $O\left(\kappa^{5}\right)$ expansion

MC tests at small λ

- L_{ϕ} for $\kappa=0.15$ and $\lambda=0.1$ as function of $\beta_{p /}$ compared with the hopping expansion with included dependence on $\beta_{p /}$ up to $O\left(\kappa^{5}\right)$

$O(2)$ limit

- For $\kappa_{s} \ll \kappa_{\tau}, \lambda=\infty$ one can obtain the time continuum limit and the Hamiltonian for the quantum rotors is ${ }^{8}$

$$
\hat{H}=\frac{\tilde{U}}{2} \sum_{x} \hat{L}_{x}^{2}-\tilde{\mu} \sum_{x} \hat{L}_{x}-\tilde{J} \sum_{\langle x y\rangle} \cos \left(\hat{\theta}_{x}-\hat{\theta}_{y}\right)
$$

with $\hat{L}=-i \partial / \partial \theta, \tilde{U}=1 /\left(2 \kappa_{\tau} a\right), \tilde{\mu}=\mu / a$ and $\tilde{J}=\kappa_{s} / a$

- The commutation relations are

$$
\left[L, \mathrm{e}^{ \pm i \hat{\theta}}\right]= \pm \mathrm{e}^{ \pm i \hat{\theta}}
$$

- We consider spin-1 truncation and represent this algebra with the angular momentum algebra

$$
\left[\hat{L}^{z}, \hat{L}^{ \pm}\right]= \pm \hat{L}^{ \pm}
$$

$O(2)$ limit

- The spectrum of the spin-1 Hamiltonian can be calculated with the tensor renormalization group (TRG) blocking
- The spectra for 2,4 and 8 site chain are shown

$U(1)$-Higgs model

- In the $1 \ll \beta_{p l} \ll \kappa_{\tau}, \lambda=\infty$ limit the Hamiltonian for the $U(1)$-Higgs model can also be constructed with TRG^{9} :

$$
\begin{aligned}
& \bar{H}=\frac{\tilde{U}_{P}}{2} \sum_{i}\left(\bar{L}_{(i)}^{z}\right)^{2}+ \\
& \frac{\tilde{Y}}{2} \sum_{i}^{\prime}\left(\bar{L}_{(i)}^{z}-\bar{L}_{(i+1)}^{z}\right)^{2}-\tilde{X} \sum_{i} \bar{L}_{(i)}^{x},
\end{aligned}
$$

where $\tilde{U}_{P} \equiv 1 / a \beta_{p l}, \tilde{Y} \equiv 1 / 2 \kappa_{\tau} a=\beta_{p l} /\left(2 \kappa_{\tau}\right) \tilde{U}_{P}$ and $\tilde{X} \equiv \sqrt{2} \beta_{p l} \kappa_{s} \tilde{U}_{P}$

[^3]
Bose-Hubbard realization for the $O(2)$ model

- The two-species Bose-Hubbard Hamiltonian

$$
\begin{aligned}
& \mathcal{H}=-\sum_{\langle i j\rangle}\left(t_{a} a_{i}^{\dagger} a_{j}+t_{b} b_{i}^{\dagger} b_{j}+\text { h.c. }\right)-\sum_{i, \alpha}\left(\mu_{a+b}+\Delta_{\alpha}\right) n_{i}^{\alpha} \\
& +\sum_{i, \alpha} \frac{U_{\alpha}}{2} n_{i}^{\alpha}\left(n_{i}^{\alpha}-1\right)+W \sum_{i} n_{i}^{a} n_{i}^{b}+\sum_{\langle i j\rangle \alpha} V_{\alpha} n_{i}^{\alpha} n_{j}^{\alpha}
\end{aligned}
$$

- When $U_{a}=U_{b}=U, W$ and $\mu_{a+b}=(3 / 2) U$ are much larger than any other energy scale, the condition $n_{i}^{a}+n_{i}^{b}=2$ is satisfied and the three states $|2,0\rangle,|1,1\rangle$ and $|0,2\rangle$ correspond to the three states of the spin-1 projection.
- By using the second-order perturbation theory we can match the BH Hamiltonian with the $O(2)$ one with $t_{\alpha}=\sqrt{V_{\alpha} U / 2}$, $\tilde{J}=4 \sqrt{V_{a} V_{b}}, \tilde{U}=2(U-W)$, and $\tilde{\mu}=-\left(\Delta_{a}-V_{a}\right)+\left(\Delta_{b}-V_{b}\right)$

Bose-Hubbard realization for the $O(2)$ model

$\mathrm{O}(2)$ and BH Spectra for $\mathrm{L}=2 ; \tilde{J} / \tilde{U}=0.1 ; \tilde{\mu}=0.02$

$\mathrm{O}(2)$ and BH Spectra for $\mathrm{L}=4 ; \tilde{J} / \tilde{U}=0.1 ; \tilde{\mu}=0$

- Left: The $O(2)$ (spin- 1 truncation) and BH spectra for a 2 site chain
- Right: The $O(2)$ (spin-1 truncation) and BH spectra for a 4 site chain

Bose-Hubbard realization for the $U(1)$-Higgs model

- To include the effects of \hat{L}^{\times}we need to add

$$
\Delta H=-\frac{t_{a b}}{2} \sum_{i}\left(a_{i}^{\dagger} b_{i}+b_{i}^{\dagger} a_{i}\right)
$$

- The matching can be achieved by imposing $t=0$, $V_{a}=V_{b}=-\tilde{Y} / 2$ and $t_{a b}=\tilde{X}$

$U(1)$-Higgs model

Abelian-Higgs and BH Spectra for $\mathrm{L}=2 ; \tilde{X} / \tilde{U}_{P}=\tilde{Y} / \tilde{U}_{P}=0.1$
Abelian-Higgs and BH Spectra for $L=4 ; \tilde{X} / \tilde{U}_{P}=\tilde{Y} / \tilde{U}_{P}=0.1$

- Left: The $U(1)$-Higgs (spin-1 truncation, $\lambda=\infty$) and BH spectra for a 2 site chain
- Right: The $U(1)$-Higgs (spin-1 truncation, $\lambda=\infty$) and BH spectra for a 4 site chain

Conclusion

- The $U(1)$-Higgs model in two limits
- $\lambda=\infty, \beta_{p l}=\infty$
- $\lambda=\infty$
can be mapped onto a two-species Bose-Hubbard model
- These two realizations are different and we made two proposals for optical lattice experiments (1403.5238, 1503.08354)
- Next steps:
- fermions (Schwinger model)
- non-Abelian gauge field

[^0]: ${ }^{1}$ Picture courtesy of JILA

[^1]: ${ }^{2}$ Affleck, Zou, Hsu, Anderson (1988), Dagotto, Fradkin, Moreo (1988)

[^2]: ${ }^{6}$ Bunk (1997)
 ${ }^{7}$ Bazavov, Berg (2005)

[^3]: ${ }^{9}$ Bazavov, Meurice, Tsai, Unmuth-Yockey, Zhang, 1503.08354

