Determination of ε_K using lattice QCD inputs

Jon Bailey, Yong-Chull Jang, and Weonjong Lee (SWME Collaboration)

Lattice Gauge Theory Research Center Department of Physics and Astronomy Seoul National University

Kobe ICC, Japan, 2015/07/14~18

ε_K and \hat{B}_K , V_{cb} I

• Definition of ε_K

$$\varepsilon_K = \frac{A[K_L \to (\pi\pi)_{I=0}]}{A[K_S \to (\pi\pi)_{I=0}]}$$

• Relation between ε_K and \hat{B}_K in standard model.

$$\begin{split} \varepsilon_{K} &= \exp(i\phi_{\varepsilon}) \sqrt{2}\sin(\phi_{\varepsilon}) \left[C_{\varepsilon} X_{\text{SD}} \ \hat{B}_{K} + \frac{\xi_{0}}{\sqrt{2}} + \xi_{\text{LD}}\right] \\ &+ \mathcal{O}(\omega\varepsilon') + \mathcal{O}(\xi_{0} \ \Gamma_{2}/\Gamma_{1}) \\ X_{\text{SD}} &= \text{Im}\lambda_{t} \Big[\text{Re}\lambda_{c} \ \eta_{cc} \ S_{0}(x_{c}) - \text{Re}\lambda_{t} \ \eta_{tt} \ S_{0}(x_{t}) \\ &- (\text{Re}\lambda_{c} - \text{Re}\lambda_{t}) \ \eta_{ct} \ S_{0}(x_{c}, x_{t}) \Big] \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

ε_K and \hat{B}_K , V_{cb} II

$$\begin{split} \lambda_i &= V_{is}^* V_{id}, \qquad x_i = m_i^2 / M_W^2, \qquad C_{\varepsilon} = \frac{G_F^* F_K m_K M_W}{6\sqrt{2} \pi^2 \Delta M_K} \\ \frac{\xi_0}{\sqrt{2}} &= \frac{1}{\sqrt{2}} \frac{\text{Im} A_0}{\text{Re} A_0} \approx -5\% \\ \xi_{\text{LD}} &= \text{Long Distance Effect} \approx 2\% \quad \longrightarrow \text{a systematic error.} \end{split}$$

 $\alpha^2 \pi^2$

<ロ> (日) (日) (日) (日) (日)

1 1 2

• Inami-Lim functions:

$$S_0(x_i) = x_i \left[\frac{1}{4} + \frac{9}{4(1-x_i)} - \frac{3}{2(1-x_i)^2} - \frac{3x_i^2 \ln x_i}{(1-x_i)^3} \right],$$

$$S_0(x_i, x_j) = \left\{ \frac{x_i x_j}{x_i - x_j} \left[\frac{1}{4} + \frac{3}{2(1-x_i)} - \frac{3}{4(1-x_i)^2} \right] \ln x_i - (i \leftrightarrow j) \right\} - \frac{3x_i x_j}{4(1-x_i)(1-x_j)}$$

Jon Bailey, Yong-Chull Jang, and Weonjong L

$arepsilon_K$ and \hat{B}_K , V_{cb} []]

$$S_0(x_t) \longrightarrow +70\%$$

$$S_0(x_c, x_t) \longrightarrow +44\%$$

$$S_0(x_c) \longrightarrow -14\%$$

• Dominant contribution ($\approx 70\%$) comes with $|V_{cb}|^4$.

$$Im\lambda_t \cdot Re\lambda_t = \bar{\eta}\lambda^2 |V_{cb}|^4 (1-\bar{\rho})$$

$$Re\lambda_c = -\lambda(1-\frac{\lambda^2}{2}) + \mathcal{O}(\lambda^5)$$

$$Re\lambda_t = -(1-\frac{\lambda^2}{2})A^2\lambda^5(1-\bar{\rho}) + \mathcal{O}(\lambda^7)$$

$$Im\lambda_t = \eta A^2\lambda^5 + \mathcal{O}(\lambda^7)$$

Jon Bailey, Yong-Chull Jang, and Weonjong L

(日) (同) (三) (三)

$arepsilon_K$ and \hat{B}_K , V_{cb} IV

• Definition of B_K in standard model.

$$B_{K} = \frac{\langle \bar{K}_{0} | [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] | K_{0} \rangle}{\frac{8}{3} \langle \bar{K}_{0} | \bar{s}\gamma_{\mu}\gamma_{5}d | 0 \rangle \langle 0 | \bar{s}\gamma_{\mu}\gamma_{5}d | K_{0} \rangle}$$
$$\hat{B}_{K} = C(\mu)B_{K}(\mu), \qquad C(\mu) = \alpha_{s}(\mu)^{-\frac{\gamma_{0}}{2b_{0}}} [1+\alpha_{s}(\mu)J_{3}]$$

• Experiment:

$$\varepsilon_K = (2.228 \pm 0.011) \times 10^{-3} \times e^{i\phi_{\varepsilon}}$$

$$\phi_{\varepsilon} = 43.52(5)^{\circ}$$

Jon Bailey, Yong-Chull Jang, and Weonjong L

▲ 重 ▶ 重 つ へ へ Lattice 2015 5 / 16

 ε_{K}

Wolfenstein Parameters

Input Parameters for Angle-Only-Fit (AOF)

- ε_K , \hat{B}_K , and $|V_{cb}|$ are used as inputs to determine the UT angles in the global fit of UTfit and CKMfitter.
- Instead, we can use angle-only-fit result for the UT apex (ρ̄, η̄).
- Then, we can take λ independently from

 $|V_{us}| = \lambda + \mathcal{O}(\lambda^7),$

which comes from K_{l3} and $K_{\mu 2}$.

• Use $|V_{cb}|$ instead of A.

$$|V_{cb}| = A\lambda^2 + \mathcal{O}(\lambda^7)$$

Jon	Bail	ev.)	ong-	Chull	Jang.	and	w	eon	ion	σ
								_		- 1

λ	0.22537(61)	[1] CKMfitter
	0.2255(6)	[1] UTfit
	0.2253(8)	[1] $ V_{us} $ (AOF)
$\bar{\rho}$	0.117(21)	[1] CKMfitter
	0.124(24)	[1] UTfit
	0.139(29)	[2] UTfit (AOF)
$\bar{\eta}$	0.353(13)	[1] CKMfitter
	0.354(15)	[1] UTfit
	0.337(16)	[2] UTfit (AOF)

.

Lattice 2015

Others

Input Parameters of B_K , V_{cb} and others

B_K

\hat{B}_K	0.7661(99)	[3] FLAG	
	0.7379(47)(365)	[4] SWME	

$$V_{cb}$$

$V_{1} \times 10^{-3}$	42.21(78)	[5] Incl.
V _{cb} ×10	39.04(49)(53)(19)	[6] Excl.

G_F	$1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$	[1]
M_W	80.385(15) GeV	[1]
$m_c(m_c)$	$1.275(25) {\rm GeV}$	[1]
$m_t(m_t)$	163.3(2.7) GeV	[7]
η_{cc}	1.72(27)	[8]
η_{tt}	0.5765(65)	[9]
η_{ct}	0.496(47)	[10]
θ	$43.52(5)^{\circ}$	[1]
m_{K^0}	497.614(24) MeV	[1]
ΔM_K	$3.484(6) imes 10^{-12} { m MeV}$	[1]
F_K	156.2(7) MeV	[1]

イロト イヨト イヨト イヨト

$\xi_0 \\ {\rm Input \ Parameters}$

$$\xi_0 = \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}$$

$$\xi_0 -1.63(19)(20) \times 10^{-4}$$
[11]

 RBC-UKQCD collaboration performs lattice calculation of ImA₂. From this result, ξ₀ can be obtained by the relation

$$\operatorname{Re}\left(\frac{\varepsilon'_{K}}{\varepsilon_{K}}\right) = \frac{1}{\sqrt{2}|\varepsilon_{K}|} \omega\left(\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \xi_{0}\right).$$

Other inputs ω , ε_K and $\varepsilon'_K/\varepsilon_K$ are taken from the experimental values.

• Here, we choose an approximation of $\cos(\phi_{\epsilon'} - \phi_{\epsilon}) \approx 1$.

•
$$\phi_{\epsilon} = 43.52(5), \ \phi_{\epsilon'} = 42.3(1.5)$$

E Sac

イロト イポト イヨト イヨト

ξ_{LD} Input Parameters

• Definition of ξ_{LD}

$$\xi_{\rm LD} = \frac{m_{\rm LD}'}{\sqrt{2}\Delta M_K}$$
$$m_{\rm LD}' = -\mathrm{Im} \left[\mathcal{P} \sum_C \frac{\langle \overline{K}^0 | H_{\rm w} | C \rangle \langle C | H_{\rm w} | K^0 \rangle}{m_{K^0} - E_C} \right]$$

• We incorporate the contribution of ξ_{LD} as follows.

$$\xi_{\text{LD}} = (0 \pm 1.6)\% \quad \longleftarrow \quad \text{Ref.} [12]$$

(日) (同) (三) (三)

ε_K : FLAG \hat{B}_K , AOF of $(\bar{ ho}, \bar{\eta})$, V_{us}

 ε_{K}

Jon Bailey, Yong-Chull Jang, and Weonjong L

Lattice 2015

Lattice 2015 10 / 16

(日) (同) (日) (日) (日)

$arepsilon_K$: SWME \hat{B}_K , AOF of $(ar{ ho},ar{\eta})$, V_{us}

 ε_{K}

Jon Bailey, Yong-Chull Jang, and Weonjong L

Lattice 2015

Lattice 2015 11 / 16

Current Status of ε_K

• FLAG: (in units of 1.0×10^{-3} , AOF)

$\varepsilon_K = 1.61 \pm 0.18$	for Exclusive V_{cb} (Lattice QCD)
$\varepsilon_K = 2.15 \pm 0.23$	for Inclusive V_{cb} (QCD Sum Rule)

• Experiments:

$$\varepsilon_K = 2.228 \pm 0.011$$

- Hence, we observe 3.4σ difference between the SM theory (Lattice QCD) and experiments.
- What does this mean? \longrightarrow Breakdown of SM ?

(日) (周) (三) (三)

Error Budget of Exclusive ε_K

cause	error (%)	memo
V_{cb}	39.3	Exclusive (FNAL/MILC)
$ar\eta$	20.4	AOF
η_{ct}	16.9	c-t Box
η_{cc}	7.1	c-c Box
$ar{ ho}$	5.4	AOF
m_t	2.4	
ξ_0	2.2	$Im(A_0)/Re(A_0)$
ξld	2.0	Long-distance
\hat{B}_K	1.5	FLAG
m_c	1.0	Charm quark mass
÷	÷	:

イロト イヨト イヨト イヨト

Conclusion and Future Outlook

- Lattice determination of ε_K from the standard model with the exclusive V_{cb} channel shows 3.4σ tension compared with the experiment.
- **2** However, in the inclusive V_{cb} channel determined from the QCD sum rules, we observe no tension.
- **③** The dominant systematic error in ε_K comes from V_{cb} in the exclusive channel.
- Hence, it becomes crucial to reduce the theoretical error of V_{cb} down to $\approx 0.5\%$ level: \longleftrightarrow the OK action.
- S Thank God very much for your help!!!

・ロン ・四 ・ ・ ヨン ・ ヨン

References for the Input Parameters I

- K.A. Olive et al. Review of Particle Physics. Chin.Phys., C38:090001, 2014.
- [2] http://www.utfit.org/UTfit/ResultsSummer2014PostMoriondSM.
- [3] Sinya Aoki, Yasumichi Aoki, Claude Bernard, Tom Blum, Gilberto Colangelo, et al. Review of lattice results concerning low energy particle physics. 2013.
- Taegil Bae et al. Improved determination of B_K with staggered quarks. Phys.Rev., D89:074504, 2014.
- [5] Andrea Alberti, Paolo Gambino, Kristopher J. Healey, and Soumitra Nandi. Precision Determination of the Cabibbo-Kobayashi-Maskawa Element V_{cb} . Phys.Rev.Lett., 114(6):061802, 2015.
- [6] Jon A. Bailey, A. Bazavov, C. Bernard, et al. *Phys. Rev.*, D89:114504, 2014.

(人間) トイヨト イヨト

References for the Input Parameters II

- S. Alekhin, A. Djouadi, and S. Moch. The top quark and Higgs boson masses and the stability of the electroweak vacuum. *Phys.Lett.*, B716:214–219, 2012.
- [8] Jon A. Bailey, Yong-Chull Jang, Weonjong Lee, and Sungwoo Park. Standard Model evaluation of ε_K using lattice QCD inputs for \hat{B}_K and V_{cb} . hep-lat/1503.05388, 2015.
- [9] Andrzej J. Buras and Diego Guadagnoli. *Phys.Rev.*, D78:033005, 2008.
- [10] Joachim Brod and Martin Gorbahn. ϵ_K at Next-to-Next-to-Leading Order: The Charm-Top-Quark Contribution. *Phys.Rev.*, D82:094026, 2010.
- [11] T. Blum, P.A. Boyle, N.H. Christ, N. Garron, E. Goode, et al. *Phys.Rev.Lett.*, 108:141601, 2012.
- [12] N.H. Christ, T. Izubuchi, C.T. Sachrajda, A. Soni, and J. Yu. Long distance contribution to the KL-KS mass difference. *Phys. Rev.*, D88(1):014508, 2013.

(日) (周) (三) (三)