Long-distance contributions to the rare kaon decay ${\cal K}^+ \to \pi^+ \nu \bar{\nu}$

Xu Feng (Columbia University)

Lat15@Kobe, 07/17/2015

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon L

Lat15@Kobe, 07/17/2015

• on behalf of RBC-UKQCD collaboration

• people involved in this project

UKQCD

Andreas Jüttner (Southampton) Andrew Lawson (Southampton) Antonin Portelli (Southampton) Chris Sachrajda (Southampton)

RBC

Norman Christ (Columbia) Xu Feng (Columbia) Christoph Lehner (BNL) Amarjit Soni (BNL)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Experiment vs Standard model

As FCNC process, $K \rightarrow \pi \nu \bar{\nu}$ decay through second-order weak interaction

SM effects highly suppressed in the second order \rightarrow ideal probes for NP

Past experimental measurement is 2 times larger than SM prediction

 $Br(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = 1.73^{+1.15}_{-1.05} \times 10^{-10} \qquad \text{arXiv:0808.2459}$ $Br(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = 9.11 \pm 0.72 \times 10^{-11} \qquad \text{arXiv:1503.02693}$

but still consistent with > 60% exp. error

Xu Feng (Columbia U.)

New experiments

New generation of experiment: NA62 at CERN aims at

- observation of O(100) events in 2-3 years
- 10%-precision measurement of ${\rm Br}(K^+ o \pi^+ \nu \bar{\nu})$

Fig: 09/2014, the final straw-tracker module is lowered into position in NA62

 $K_L \to \pi^0 \nu \bar{\nu}$

- \bullet even more challenging since π^0 decays quickly to two photons
- only upper bound was set by KEK E391a in 2010
- new KOTO experiment at J-PARC designed to observe K_L decays

Low energy effective field theory

 $M_Z, M_W \sim 100 \text{ GeV}$

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon Lat15@Kobe, 07/17/2015 5 / 22

Effective Hamiltonian for charm quark contribution

• SD part: \mathcal{H}_{eff} described by a dim-6 operator $(\bar{s}d)_{V-A}(\bar{\nu}\nu)_{V-A}$

$$\mathcal{H}_{eff}^{(6)} = \frac{G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} \sum_{\ell=e,\mu,\tau} \lambda_c X_c^{\ell} (\bar{s}d)_{V-A} (\bar{\nu}\nu)_{V-A}$$

 X_c^{ℓ} is the perturbative Inami-Lim function for charm quark loop • LD part: bilocal effects from two four-fermion operator O_1 and O_2

$$\mathcal{H}_{eff}^{BL} = \frac{G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} \sum_{\ell=e,\mu,\tau} \lambda_c \left(\frac{\pi^2}{M_W^2} \int d^4 x \, O_1(x) \, O_2(0) \right)_{u-c}$$

• Define bilocal contribution X_{BL} as

$$X_{BL} = \frac{\langle \pi \nu \bar{\nu} | \left(\frac{\pi^2}{M_W^2} \int d^4 x \, O_1(x) \, O_2(0) \right)_{u-c} | K \rangle}{\langle \pi \nu \bar{\nu} | (\bar{s}d)_{V-A} (\bar{\nu}\nu)_{V-A} | K \rangle}$$

so that X_{BL} can be compared to X_c^{ℓ} directly

Lattice setup

- $16^3 \times 32$, DWF+Iwasaki, $m_{\pi} \approx 420$ MeV, $m_K \approx 540$ MeV, $a^{-1} = 1.73$ GeV, $m_c = 860$ MeV, 800 configurations
- Construct 4-point correlator $\langle \phi_{\pi}(t_{\pi})O_{1}(t_{1})O_{2}(t_{2})\phi_{K}^{\dagger}(t_{K}) \rangle$
 - wall source for ϕ_{π} and $\phi_{K} \Rightarrow$ better overlap with ground state
 - O_1 and O_2 : point source for one operator, the other is sink
- Perform time translation average \rightarrow statistical error reduced by \sqrt{T}
 - Iow-mode deflation to reduce the time required by light quark CG
- One can extract the scalar amplitude $F_{BL}^{\ell}(p_{K}, p_{\nu}, p_{\bar{\nu}})$

 $\int dt \langle \pi^+ \nu \bar{\nu} | T\{O_1(t)O_2(0)\} | K^+ \rangle = F_{BL}^{\ell}(p_K, p_\nu, p_{\bar{\nu}}) \, \bar{u}(p_\nu) \not p_K(1 - \gamma_5) v(p_{\bar{\nu}})$

(ロト 4 戸 ト 4 日 ト 4 日 - シックや

Preliminary results for W-W diagrams

(Z-exchange similar as γ -exchange, see A. Lawson's talk)

Xu Feng (Columbia U.) Long-distance contributions to the rare kaon Lat15@Kobe, 07/17/2015 8 / 22

Type 1 diagram

Long-distance contributions to the rare kaon (Lat15@Kobe, 07/17/2015 9 / 22

< 回 > < 三 > < 三 >

3

Double integration

• Perform the double integration to gain a better precision

$$\sum_{t_{1}=t_{a}}^{t_{b}} \sum_{t_{2}=t_{a}}^{t_{b}} \langle f | T[O^{\Delta S=1}(t_{2})O^{\Delta S=0}(t_{1})] | K \rangle e^{m_{K}t_{1}} e^{-m_{f}t_{1}}$$

$$= \sum_{n_{s}} \frac{\langle f | O^{\Delta S=1} | n_{s} \rangle \langle n_{s} | O^{\Delta S=0} | K \rangle}{E_{n_{s}} - E_{f}} \left(T_{\text{box}} - \frac{1 - e^{(E_{f} - E_{n_{s}})T_{\text{box}}}}{E_{n_{s}} - E_{f}} \right)$$

$$- \sum_{n} \frac{\langle f | O^{\Delta S=0} | n \rangle \langle n | O^{\Delta S=1} | K \rangle}{E_{K} - E_{n}} \left(T_{\text{box}} + \frac{1 - e^{(E_{K} - E_{n})T_{\text{box}}}}{E_{K} - E_{n}} \right)$$

here $T_{box} = t_b - t_a + 1$ is defined as size of the integral window

• Remove the exponential growing contamination, and fit with $a + bT_{box}$, the slope b is what we want

• On how to remove exp contamination, see also A. Lawson's talk

Xu Feng (Columbia U.)

Integrated matrix element

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon Lat15@Kobe, 07/17/2015

F_{BL}^{ℓ} for type 1 diagram

F_{BL}^{ℓ}	lattice	model
е	$3.244(90) imes 10^{-2}$	$3.352(12) imes 10^{-2}$
μ	$3.506(77) imes 10^{-2}$	$3.511(13) imes 10^{-2}$
au	$-2.871(70) imes 10^{-3}$	$-2.836(10) \times 10^{-3}$

• Vacuum saturation approximation assumes only single-lepton contribution in the intermediate state

$$f_{K} p_{K,\mu} \bar{u}(p_{\nu}) \gamma_{\mu} (1 - \gamma_{5}) \frac{\not q}{q^{2} - m_{\ell}^{2}} \gamma_{\nu} (1 - \gamma_{5}) v(p_{\bar{\nu}}) f_{\pi} p_{\pi,\nu}$$

$$= f_{K} f_{\pi} \frac{2q^{2}}{q^{2} - m_{\ell}^{2}} \bar{u}(p_{\nu}) \not p_{K} (1 - \gamma_{5}) v(p_{\bar{\nu}})$$

with $q = p_K - p_\nu = p_\pi + p_{\bar{\nu}}$

• In the above table, model results are given by $Z_A^{-2} f_K f_\pi rac{2q^2}{q^2 - m_e^2}$

Xu Feng (Columbia U.)

Type 2 diagram

A (10) < A (10) </p>

- ∢ ≣ →

æ

Short-distance divergence

• By dimensional counting the loop integrals are quadratically divergent

- GIM mechanism reduces the divergence to logarithmic
- In the physical world, the SD divergence is cut off by physical M_W
- In the lattice calculation it is cut off by an energy scale $\Lambda_{lat} \sim \frac{1}{a}$
- Correction can be made through $A A_{SD}^{lat} + A_{SD}^{cont} =$

 $\int d^4x \langle f | T \{ O_1(x) O_2(0) \} | K \rangle - \langle f | C^{lat}(\mu) O_{SD} | K \rangle + \langle f | C^{cont}(\mu) O_{SD} | K \rangle$

- $\bullet~{\it C}^{\it lat}(\mu)$ is determined non-perturbatively using RI/SMOM approach
- $C^{cont}(\mu)$ can be calculated perturbatively, currently in LO

Rome-Southampton method (RI/SMOM)

- Evaluate off-shell Green's function with $p_i^2 \gg \Lambda_{QCD}^2$
- Energy scale of internal momentum, μ^2 , is forced to be larger than p_i^2
- At high energy scale μ, mainly SD contribution to off-shell Green's function
- Correctly represented by a SD operator multiplying with Wilson coefficient C^{lat}(μ)

Type 2 diagram

Preliminary results

• Type 1 diagram

F_{BL}^{ℓ}	lattice	model
е	$3.244(90) imes 10^{-2}$	$3.352(12) imes 10^{-2}$
μ	$3.506(77) imes 10^{-2}$	$3.511(13) imes 10^{-2}$
au	$-2.871(70) imes 10^{-3}$	$-2.836(10) \times 10^{-3}$

Type 2 diagram

$$\begin{array}{c|c} F_{BL}^{\ell} & \text{lattice} \\ e & -2.164(31) \times 10^{-1} \\ \mu & -2.164(31) \times 10^{-1} \\ \tau & -9.03(14) \times 10^{-2} \end{array}$$

• It seem that type 2 contribution is much larger than type 1, but

type 2 diagram contains large lattice cutoff effects due to SD divergence

Xu Feng (Columbia U.)

イロト 不得下 イヨト イヨト 二日

Short-distance matching and correction

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon Lat15@Kobe, 07/17/2015

SD matching: different loop momentum

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon Lat15@Kobe, 07/17/2015

Pauli-Villars method

• Rome-Southampton (RI/SMOM)

 $\int d^4x \langle f | T \{ O_1(x) O_2(0) \} | K \rangle - \langle f | C^{lat}(\mu^2) O_{SD} | K \rangle + \langle f | C^{cont}(\mu^2) O_{SD} | K \rangle$

- μ^2 is the scale of loop momenta
- $C^{lat}(\mu^2)$ contains the lattice cutoff effects, but replaced by $C^{cont}(\mu^2)$

Pauli-Villars

$$X_{BL}^{\ell} - X_{BL}^{M} + X_{c}^{M}$$

- we use a heavy lepton M as a regulator
- X_{BL}^{M} contains the lattice cutoff effects, but replaced by correct SD X_{c}^{M}
- we calculated X^{ℓ}_{BL} with ℓ = e, μ, τ , thus we use M = τ as a regulator

E nar

SD matching: Rome-Southampton vs Pauli-Villars

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon Lat15@Kobe, 07/17/2015

Outlook

- Calculation of the non-local matrix element is highly non-trivial, see also
 - A. Lawson's talk on $K^+ \rightarrow \pi^+ \ell^- \ell^-$
 - N. Christ's talk on ϵ_K
 - C. Sachrajda's talk on EM correction to hadronic process
 - A. Jüttner's plenary talk
- Our exploratory study sheds light on the feasibility of lattice calculation of $K^+ \to \pi^+ \nu \bar{\nu}$
- We are starting the calculation at m_{π} = 170 MeV. In the future, physical charm quark will also be included.
- NA62 will confront SM soon \Rightarrow It's in a timely fashion for lattice QCD to make impact on $K^+ \Rightarrow \pi^+ \nu \bar{\nu}$

イロト 不得下 イヨト イヨト

E Sac