The Nature of the Roberge-Weiss Transition in $N_f = 2$ QCD with Wilson Fermions on $N_t = 6$ Lattices

Christopher Czaban
in collaboration with
O. Philipsen, C. Pinke, F. Cuteri, A. Sciarra

Lattice 2015, 14th July 2015
Kobe, Japan
Outline

QCD Phase Diagram

Imaginary Chemical Potential and Roberge Weiss Symmetry

The QCD Phase Structure for Imaginary μ

Previous and Ongoing Studies

Summary and Perspectives
QCD Phase Diagram

- Sign problem spoils Hybrid Monte Carlo simulations for $\mu > 0$.
- Simulate at $\mu = 0$ and apply e.g. extrapolation techniques.
- Choose purely imaginary chemical potential $\mu = i\mu_i$.偏偏
Sign problem spoils Hybrid Monte Carlo simulations for $\mu > 0$.
Simulate at $\mu = 0$ and apply e.g. extrapolation techniques.
Choose purely imaginary chemical potential $\mu = i\mu_i$. Thanks to C. Pinke
Imaginary Chemical Potential and Roberge Weiss Symmetry

- No sign problem \rightarrow Hybrid Monte Carlo applicable.
- QCD partition function symmetries (Roberge-Weiss symmetry)

\[Z(\mu) = Z(-\mu), \quad Z\left(\frac{\mu}{T}\right) = Z\left(\frac{\mu}{T} + i\frac{2\pi n}{3}\right). \]

- Adding $\mu_i/T = 2\pi n/3$, $n \in \mathbb{Z}$ is equivalent to $Z(3)$ transformation.
- Describes completely equivalent physics.
- Centre symmetry is a good symmetry again.
- Centre sectors separated by

\[\mu^c_i = \frac{\pi T}{3} (2n + 1), \quad n \in \mathbb{Z}. \]

Imaginary Chemical Potential and Roberge Weiss Symmetry

Roberge-Weiss phase diagram

Columbia plot at $\mu = 0$

- Polyakov loop on the lattice: $L(n) = \frac{1}{V} \prod_{\tau = 0}^{N_{\tau}} U_0(\tau, n)$
- Phase of the Polyakov is sensitive to centre sector transitions

$$\text{Tr}L^g = e^{-i\frac{2\pi n}{3}} \text{Tr}L$$
Imaginary Chemical Potential and Roberge Weiss Symmetry

Roberge-Weiss phase diagram

Columbia plot at $\mu_c = i\pi T/3$

- Polyakov loop on the lattice: $L(n) = \frac{1}{V} \prod_{\tau_0}^{N_\tau} U_0(\tau, n)$
- Phase of the Polyakov is sensitive to centre sector transitions

$$\text{Tr} L^g = e^{-i\frac{2\pi n}{3}} \text{Tr} L$$
The QCD Phase Structure for Imaginary μ

$N_f = 2$

$N_f = 1$

phys. point

m_s

m_{ud}

$crossover$

$Z(2)$

1^{st}

m_{ud}^{tric}

m_s^{tric}

$N_f = 3$

1^{st}

$N_f = 3$

1^{st}

$Z(2)$

2^{nd} order $3d$ Ising

$N_f = 3$

1^{st}

$Z(2)$

$crossover$

0

$-(\frac{\pi}{3})^2$

$N_f = 1$

$N_f = 2$

$-(\frac{\pi}{3})^2$

1^{st}

2^{nd} $3d$ Ising

1^{st}

1^{st}

1^{st}

1^{st}

m_{ud}

m_s

P. de Forcrand and O. Philipsen, JHEP (2007)
P. de Forcrand and O. Philipsen, JHEP (2008)
H. Saito et al., arXiv:1309.2445 (hep-lat)
The QCD Phase Structure for Imaginary μ

$N_f = 2$

$N_f = 3$

m_s

m_{ud}

$Z(2)$

1^{st}

2^{nd} order $3d$ Ising

See next talk by Christopher Pinke

P. de Forcrand and O. Philipsen, JHEP (2007)
P. de Forcrand and O. Philipsen, JHEP (2008)
H. Saito et al., arXiv:1309.2445 (hep-lat)
The QCD Phase Structure for Imaginary μ

1^{st} order \rightarrow 1^{st} order triple

Previous and Ongoing Studies

Studies done on $N_T = 4$:
- Staggered, $N_f = 2, 2 + 1, 3$
- Wilson, $N_f = 2$

Ongoing for $N_T = 6$:
- Wilson, $N_f = 2$
- $\kappa \in (0.1000, 0.1650)$
- $O(15)\beta$ for $3-4\ N_s \in (16, 36)$
- $O(80 k - 200 k)$ trajectories

OpenCL based CLQCD code
Bach, Philipsen, Pinke (arxiv:1411.5219v2)(2014)
https://github.com/CL2QCD/cl2qcd.git

P. de Forcrand and O. Philipsen, JHEP (2007)
P. de Forcrand and O. Philipsen, JHEP (2008)
Previous and Ongoing Studies

Studies done on $N_T = 4$:

- Staggered, $N_f = 2$, $2 + 1$, 3
- Wilson, $N_f = 2$

Ongoing for $N_T = 6$:

- Wilson, $N_f = 2$
- $\kappa \in (0.1000, 0.1650)$
- $\mathcal{O}(15)\beta$ for 3-4 $N_\sigma \in (16, 36)$
- $\mathcal{O}(80k - 200k)$ trajectories
- OpenCL based CL2QCD code

Bach, Philipsen, Pinke (arxiv:1411.5219v2)(2014)
https://github.com/CL2QCD/cl2qcd.git

P. de Forcrand and O. Philipsen, JHEP (2007)
P. de Forcrand and O. Philipsen, JHEP (2008)
Extracting the Order of a Phase Transition

\[B_4(\beta) = \frac{\langle (L_{\text{Im}} - \langle L_{\text{Im}} \rangle)^4 \rangle}{\langle (L_{\text{Im}} - \langle L_{\text{Im}} \rangle)^2 \rangle^2} \]

\[\lim_{V \to \infty} B_4(\beta_c) = \begin{cases}
1, & 1^{st} \text{ order} \\
1.5, & 1^{st} \text{ order triple} \\
1.604, & 2^{nd} \text{ order } Z(2) \\
3, & \text{crossover}
\end{cases} \]

\[B_4(\beta, N_\sigma) = B_4(\beta_c, \infty) + a(\beta - \beta_c)N_\sigma^{1/\nu} + \ldots \]
Finite Size Scaling

- Smoothing/interpolating Data points with Ferrenberg-Swensen reweighting.
- Fitting of

\[B_4(\beta_c, N_\sigma) = B_4(\beta_c, \infty) + a(\beta - \beta_c) N_\sigma^{1/\nu} \]

to reweighted points.

\[\kappa = 0.11, \quad N_\tau = 6 \]
Finite Size Scaling

\[B_4(\beta_c, N_\sigma) = B_4(\beta_c, \infty) + a(\beta - \beta_c)N_\sigma^{1/\nu} + \ldots \]

\[= B_4(\beta_c, \infty) + ax + \ldots \]

- **Fit criteria:**
 - ✓ \(Q \approx 50\% \)
 - ✓ \(\chi^2 \approx 1 \)
 - ✓ Overlap in \(x \geq 80\% \)
 - ✓ Symmetry of \(x \) around 0

![Diagram](image-url)
Finite Size Scaling

\[B_4(\beta_c, N\sigma) = B_4(\beta_c, \infty) + a(\beta - \beta_c)N_\sigma^{1/\nu} + \ldots \]
\[= B_4(\beta_c, \infty) + a \times + \ldots \]

- Fit criteria:
 - ✓ \(Q \approx 50\% \)
 - ✓ \(\chi^2 \approx 1 \)
 - ✓ Overlap in \(x \geq 80\% \)
 - ✓ Symmetry of \(x \) around 0

- \(\nu \) less prone to finite size effects
 → better suited to extract order of phase transition

- Determine order of phase transition according to

\[
\nu = \begin{cases}
1/3 & \text{1st order triple} \\
1/2 & \text{tricritical} \\
0.63 & \text{2nd order 3D Ising}
\end{cases}
\]
Results for studies with $N_f = 2$ flavors of Wilson fermions on $N_T = 4$ lattices

- κ as function of the bare quark mass: $\kappa = (2(am + 4))^{-1}$
Results for studies with $N_f = 2$ flavors of Wilson fermions on $N_\tau = 6$ lattices

- κ as function of the bare quark mass: $\kappa = (2 (am + 4))^{-1}$
- Shift in 1st order region to smaller kappa: $T = 1/(aN_\tau)$
 \[\Rightarrow\] Tricritical mass: $m_{\pi}^{\text{tric}} \approx 730$ MeV $\rightarrow m_{\pi}^{\text{tric}} \approx 660$ MeV
Results

Results for studies with $N_f = 2$ flavors of Wilson fermions on $N_\tau = 4, 6$ lattices

- κ as function of the bare quark mass: $\kappa = (2 (am + 4))^{-1}$
- Shift in 1st order region to smaller kappa: $T = 1/(aN_\tau)$
 \Rightarrow Tricritical mass: $m^{tric}_{\pi} \approx 730$ MeV $\Rightarrow m^{tric}_{\pi} \approx 660$ MeV
Results

Results for studies with $N_f = 2$ flavors of Wilson fermions on $N_\tau = 4, 6$ lattices

- κ as function of the bare quark mass: $\kappa = (2(am + 4))^{-1}$
- Shift in 1^{st} order region to smaller kappa: $T = 1/(aN_\tau)$
 \Rightarrow Tricritical mass: $m_{\pi}^{tric} \approx 730$ MeV $\rightarrow m_{\pi}^{tric} \approx 660$ MeV
Summary

- No sign problem for imaginary chemical potential.
- QCD phase diagram constrained by imaginary chemical potential region.
- $N_\tau = 6$ studies with Wilson fermions ongoing.
- Shift in $1^{st}/2^{nd}$ order region.

Perspectives

- Compare Wilson results to $N_\tau = 6$ staggered results (ongoing).
- Start studies for $N_\tau = 8$.
- Extend Wilson fermion studies to $N_f = 3$.