Zoltan Fodor[‡], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal^{**},</u> Daniel Nogradi^{**}, Chik Him Wong[†]

Taste symmetry restoration in the sextet model with staggered fermions

Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal</u>^{**}, Daniel Nogradi^{**}, Chik Him Wong[†]

Lattice Higgs Collaboration (LatHC)

†: University of Wuppertal, *:University of the Pacific ††: University of California, San diego, **:Eotvos University

Lattice 2015

Plan of the talk

Taste symmetry restoration in the sextet model with staggered fermions

Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal</u>^{**}, Daniel Nogradi^{**}, Chik Him Wong[†]

- Introduction
- Pion channels in staggered fermion.
- Discussion of the taste breaking effects in our data of pion spectra in the light of LO and NLO SχPT and comparison to those in QCD.
- Almost restoration of taste symmetry in the pion spectra at our smallest lattice spacing for a range of quark mass.

Conclusion.

Introduction

Taste symmetry restoration in the sextet model with staggered fermions

Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal</u>^{**}, Daniel Nogradi^{**}, Chik Him Wong[†]

- Simulations with staggered fermion have the advantages of being very fast and a remnant of the chiral symmetry for the massless fermions is retained at finite lattice spacing.
- These advantages may be offset by taste breaking effects which if not negligible can introduce significant lattice artifacts in the final outcome.
- In particular any quantity sensitive to the chiral loops can be expected to show large taste breaking artifacts. In the present model (*) precise determination of the Goldstone decay constant F in the chiral limit is very important for scale setting and thus it is important to have good idea about the taste breaking effects in our simulations.
- * Brief overview : Kuti (14/7 Tuesday, 16:30 PM),

Hadron spectroscopy in extended data set: Wong (14/7 Tuesday, 16:50 PM), Study of the β function : Nogradi (14/7 Tuesday, 17:30 PM), New method to study Dirac's spectrum and it's application in the sextet gauge model: Holland (Wednesday, Poster session).

Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal</u>^{**}, Daniel Nogradi^{**}, Chik Him Wong[†] Full pion spectra gives an excellent laboratory to study taste breaking effects because:

We have a theory for it.

 Easily detectable: pion taste breaking effects are larger than those in the other states (e.g. vector mesons or baryons).

Pion taste breaking effects feed into all quantities.

Full pion spectra with staggered fermion

Taste symmetry restoration in the sextet model with staggered fermions

- Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal</u>^{**}, Daniel Nogradi^{**}, Chik Him Wong[†]
- In our simulation we do not take into account the disconnected diagrams and hence consider only non-diagonal flavour pions (π^{+/-}).
- The four tastes of staggered fermion give 16 tastes (including the taste singlet) of pions → can be identified with the spin-taste structure γ₅ ⊗ ξ_F where ξ_F = {I,ξ₅, ξ_μ, ξ_{μ5}, ξ_{μν} = ½[ξ_μ, ξ_ν]}.
 ⇒ 1+1+4+4+6 = 16
- At zero spatial momenta these states fall into 8 irreps of the lattice time slice group: {*I*, *ξ*₅, *ξ*_i, *ξ*₄, *ξ*_{i5}, *ξ*₄₅, *ξ*_{ij}, *ξ*_{i4}}

Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal^{**},</u> Daniel Nogradi^{**}, Chik Him Wong[†] Properties of the pion spectra can be studied by using staggered chiral perturbation theory (S χ PT) [1,2]. It is shown that [1], taste symmetry breaking happens in two steps:

1 At leading order in the joint expansion in $p^2 \sim a^2$ and m pion spectrum respects an SO(4) subgroup of full SU(4) taste symmetry of massive staggered fermion.

 $SU(4) \longrightarrow SO(4)$ at $O(a^2) \Longrightarrow \xi_F \in \{I, \xi_5, \xi_\mu, \xi_{\mu 5}, \xi_{\mu \nu}\}$

2 At $O(a^2p^2)$ SO(4) breaks down to discrete spin taste symmetry $\Longrightarrow \xi_F \in \{I, \xi_5, \xi_i, \xi_4, \xi_{i5}, \xi_{45}, \xi_{ij}, \xi_{i4}\}.$

1. W. J. Lee and S. R. Sharpe, Phys. Rev. D 60, 114503 (1999) [hep-lat/9905023].

2. C. Aubin and C. Bernard, Phys. Rev. D 68, 034014 (2003) [hep-lat/0304014].

•
• Uperators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

R. Altmeyer *et al.* [MT(c) Collaboration], Nucl. Phys. B **389**, 445 (1993). channels: 1,2,7,8,13,14,17,18

representing $\{I, \xi_5, \xi_i, \xi_4, \xi_{i5}, \xi_{45}, \xi_{ij}, \xi_{i4}\}$

Taste	
symmetry	
restoration in	
the sextet	
model with	
staggered	
fermions	
Zoltan Fodor [†] ,	
Kieran	
Holland*,	
Julius Kuti ^{††} ,	
Santanu Monda	<u>l</u> **
Daniel	
Nogradi**,	
Chik Him	

LABLE 1

Irreducible representations and their operators for mesonic states which are local in time. $i \neq j \neq k \neq i$. The symmetric operator J is given in eq. (3.1), while $\eta_{-k} \leq nd$ have their usual definitions: $\eta_{\mu}(\mathbf{x}) = (-1)^{e_1+\cdots+2e_{n-1}}$, see eq. (2.5), $\xi_{\mu}(\mathbf{x}) = (-1)^{e_1+\cdots+2e_{n-1}}$. The sum over \mathbf{x} is omitted. The meaning of the columns is described in the text in subsect 3.1

No.	Operator	r"","[2]	Ť ₀	€4	$\Gamma^{D} \otimes \overline{\Gamma^{F}}$	State	Part.
1	x̄χ	1**	+	+	1@1	05**	fo
				-	<i>γ</i> 4 <i>γ</i> 5 ⊗ <i>γ</i> 4 <i>γ</i> 5	θ_A^{-+}	π
2	$\eta_4 \xi_4 \overline{\chi} \chi$	1*~	+	+	$\gamma_4 \otimes \gamma_4$	0 ⁺⁻	-
				-	γ ₅ ⊗γ ₅	0 ⁻⁺⁺	π
3	$\eta_i \epsilon_{i,i} \overline{\chi} \chi$	3""" -	+	+	$\gamma_i \gamma_5 \otimes \gamma_i \gamma_5$	1 ⁺⁺	a ;
				-	Y1 Y4 8 Y1 Y4	1_	ρ
4	$\eta_4 \xi_4 \eta_i \epsilon \xi_1 \overline{\chi} \chi$	3****	+	+	YIY& SYIYE	1 ⁴⁻	br
				-	$\gamma_i \otimes \gamma_i$	1.	ρ
5	$\bar{\chi}\eta, \Delta, \chi$	3-+	-	+	$\gamma_{c} \otimes 1$	15-	ω
					Y.Y. 8Y.Y.	1.1-	b,
6	$n_{i}\xi_{i}\overline{\gamma}n_{i}\Delta_{i}\gamma$	3	+	+	Y.Y. 8 Y.	12-	,
	append of the			-	Y.Y. 8 Y.	12+	a.
7	Vel. A.V	3*	+	+	x.@x.x.	0.7	17
	A-51 -1A			_	x.@x.x.	0?-	_
8	4.1. Set. A.V.	3*-+		+	N.N. BN.N.	0.+	-
	74544-51 =14	2		_	1.0%	0.2+	
0	m of the A is	6		+	107	1	a0
,	$\eta_i e_{s_i} \chi \eta_j \omega_j \chi$	0		-	7 & 74 @ 71 75	1A.	P
10	a factor for the	4-+			74 950 9194	A	aj
10	$\eta_{4} \epsilon_{4} \eta_{i} \epsilon_{5} \chi \eta_{j} \Delta_{j} \chi$	0		-	$\gamma_k \otimes \gamma_j \gamma_k$	A	e e
				_	$\gamma_i \gamma_j \otimes \gamma_i$	"A	01
11	$\epsilon_{iik} \tilde{\chi} \eta_i \Delta_i (\eta_i \Delta_i \chi)$	3.++		+	$\gamma_i \gamma_j \otimes 1$	15	h ₁
				_	$\gamma_{1} \otimes \gamma_{4} \gamma_{5}$	1.	ρ
12	$\epsilon_{i,i}\eta_{i}\zeta_{i}\overline{\chi}\eta_{i}\Delta_{i}(\eta;\Delta_{i}\chi)$	3+-	-	+	Y+Y5 8 Y4	14+	a.
				-	Y1 Y. 8 Y:	15	p
13	$\epsilon_{i\alpha} \bar{\chi} \bar{\xi} \Delta (\bar{\xi}, \Delta, \chi)$	3" **	-	+	187.7	07+	an
	-(jkas) =(-)) · ja-				Y.Y. 8 Y.	0.2+	π
14	$\epsilon_{mn} \pi_{1} \overline{\ell} \cdot \overline{\nu} \overline{\ell} \cdot \Lambda (\ell, \Lambda, \nu)$	3"+-		+	2.02.2.2.	a?	_
	CINTEREST ST ST ST ST			-	N. 8 Y. Y.	0	
15	$n \in \mathbb{Z}$ $n \in A(T \land Y)$	6++	-	+	75 - 7474	12-	h
10	$\eta_k s_k x \eta_i \simeq (s_j \simeq j x)$	0		-	11160 1318	12	01
16	- t - t = - 4(t 4 -)	4+-			1,0 11	- 12÷-	"
10	$\eta_{454}\eta_{k5k}\chi\eta_{i}\Delta_{i}\chi_{j}\Delta_{j}\chi_{j}$	0	Ŧ	Ŧ	7,7507,75	10	a1
				-	$\gamma_j \gamma_4 \otimes \gamma_j \gamma_4$	14	ρ
17	$\overline{\chi}\eta_1 \Delta_1(\eta_2 \Delta_2(\eta_1 \Delta_1 \chi))$	1-+	+	+	γ ₄ γ ₅ ⊗ 1	0_{s}^{-+}	η'
					187.70	0.++	a.
18	$n_{1}\zeta_{1}\overline{x}n_{1}\Delta_{1}(n_{1}\Delta_{2}(n_{1}\Delta_{1}x))$	1	-	+	Y 8 Y	0.+	π
	34844.31 = [132 = 2133 = 34.0			_	Y. @ Ye	0.	-
19	$n \in (\bar{\chi}n, A \langle n, A \langle n, A, \chi \rangle)$	3""	-	+	2.2.82.22	12-	0
	(1-4)x(3) = 1(42) = 2(43) = 3x(6)			_	Y.Y. 87.Y.	12+	a.
20	$n \in n \in \overline{v}n$, $A(n, A(n, A, v))$	3"""-+	+	+	2.82.21	- 1 ² -	
20	2000 (11-010 (1) - 0 (1) = 0 (1) = 2 (1) = 3 (1)			_	2.2.82	17-	<u>ь</u> .
					1/16/01	· A	
					Image:	· • E	74 Þ

Taste breaking in pion spectra at the tree level of ${\rm S}\chi{\rm PT}$

Taste symmetry restoration in the sextet model with staggered fermions

Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal</u>^{**}, Daniel Nogradi^{**}, Chik Him Wong[†]

At tree level the general expression of masses of non-diagonal flavour pions (π^+/π^-) is given by,

$$M^2_{\pi^{+/-}_b} = 2B(m_u + m_d) + a^2 \Delta(\xi_b)$$
 taste label b $\in \{5, \mu 5, \mu \nu, \mu, I\}$

The mass splits are:

$$\Delta(\xi_5) \equiv \Delta_P = 0 \longrightarrow axial \ U(1) \ symmetry$$
$$\Delta(\xi_{\mu 5}) \equiv \Delta_A = \frac{16}{f^2}(C_1 + 3C_3 + C_4 + 3C_6)$$
$$\Delta(\xi_{\mu \nu}) \equiv \Delta_T = \frac{16}{f^2}(2C_3 + 2C_4 + 4C_6)$$
$$\Delta(\xi_{\mu}) \equiv \Delta_V = \frac{16}{f^2}(C_1 + C_3 + 3C_4 + 3C_6)$$
$$\Delta(\xi_5) \equiv \Delta_I = \frac{16}{f^2}(4C_3 + 4C_4)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Full pion spectra

Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal^{**}</u> Daniel Nogradi^{**}, Chik Him Wong[†] • The Δ s are of comparable size for non-Goldstone pions.

Equating all four Δ s of non-Goldstone pions with a constant (Δ) we get

 $C_1 = C_3 = C_4 = C_6 = \frac{\Delta f^2}{128}$

 \implies Preliminary indication of all four coefficients having comparable values.

Very different from QCD which gives approximately equal splittings of mass squares of the non-Goldstone pions in the order of P, A, T, V, I.

 \implies C_4 is the dominant coefficient.

T. Bae, D. H. Adams, C. Jung, H. J. Kim, 2, J. Kim, K. Kim, W. Lee and S. R. Sharpe, Phys. Rev. D **77**, 094508 (2008).

イロト 不得 トイヨト イヨト

Taste breaking at NLO S χ PT

Taste symmetry restoration in the sextet model with staggered fermions

Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal</u>^{**}, Daniel Nogradi^{**}, Chik Him Wong[†]

Ι

The S χ PT prediction for taste breaking of Goldstone and non-Goldstone pion masses at NLO can be expressed as,

$$\mathcal{M}_{NLO}^2 = \mathcal{M}_{LO}^2(1+\delta_{b'}) ext{ taste label } b' \in \{5, i5, 45, ij, i4, i, 4, I\}, \ ext{ and } \delta_{b'} \sim \mathcal{O}(a^2).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

S. R. Sharpe and R. S. Van de Water, Phys. Rev. D **71**, 114505 (2005) [hep-lat/0409018].

(日)、 э.

(4日) (周) (日) (日) (日) (0000

Non-parallel slopes: fan out structure

Taste symmetry restoration in the sextet model with staggered fermions Zoltan Fodor[†]. Kieran Holland* Julius Kuti^{††} Santanu Mondal** Daniel Nogradi**. Chik Him Wong[†]

Very different from QCD where non-Goldstone pions have similar slopes slightly different from the Goldstone pion.

 β =3.2, Volume = 32³X64, 48³X96 and 56³X96

Decreasing the lattice spacing

Decreasing further

Summary

Taste symmetry restoration in the sextet model with staggered fermions

- Zoltan Fodor[†], Kieran Holland^{*}, Julius Kuti^{††}, <u>Santanu Mondal</u>^{**}, Daniel Nogradi^{**}, Chik Him Wong[†]
- Sextet model gives different kind of taste breaking pattern in the full pion spectra than QCD.
- Preliminary indication from our data is that the coefficients of some taste breaking terms in LO SχPT Lagrangian are of comparable values.
- At our smallest lattice spacing taste symmetry in pion spectra is almost restored for a range of quark mass within the precision of the data.