First results of baryon interactions from lattice QCD with physical masses (1)

- General overview and two-nucleon forces -

Takumi Doi

(Nishina Center, RIKEN)

for HAL QCD Collaboration

LQCD outputs for Baryon Forces highly awaited

H-dibaryon ? : NAGARA-event (2001) :-hypernuclei : KISO-event (2014) :-hypernuclei : KISO-event (2014)

ASTRO-H

(FY2015-)

EoS of Dense Matter Neutron Star APR 31 J1614-2230 2 PSR1913+16 1.5 <u>M</u> M₀ 2N Y dof 1 0.5 0 8 10 12 14 R (km)

Neutron Star Merger EoS / Nucleosynthesis

KAGRA (2018-)

RIBF (2007-)

From LQCD to Nuclei / Neutron Star

Towards realistic LQCD Baryon Forces

Gauge Config Generation

→ Talk by N. Ukita (7/14)

Baryon Forces

HAL QCD method

3 talks now (+ 1 talk by H. Nemura, 07/17)

- Signal/Noise Issue
 w/ (almost) continuum on Lat
- Coupled Chanel Systems
- Computational Challenge

10PFlops

K computer

c.f. Direct Nuclei: Talk by T. Yamazaki (07/15)

Hadrons to Atomic nuclei from Lattice QCD (HAL QCD Collaboration)

- S. Aoki, S. Gongyo, T. Iritani, D. Kawai, T. Miyamato (YITP)
- T. Doi, T.Hatsuda, Y. Ikeda, (RIKEN)
- F. Etminan (Univ. of Birjand)
- T. Inoue (Nihon Univ.)
- N. Ishii, K. Murano (RCNP)
- H. Nemura, K. Sasaki (Univ. of Tsukuba)

Gauge configs are generated in HPCI Strategic Program Field 5 Project 1 Collaboration

[HAL QCD method]

• Nambu-Bethe-Salpeter (NBS) wave function

 $\psi(\vec{r}) = \langle 0 | N(\vec{r})N(\vec{0}) | N(\vec{k})N(-\vec{k}); in \rangle$

 $(\nabla^2 + k^2)\psi(\vec{r}) = 0, \quad r > R$

- phase shift at asymptotic region

$$\psi(r) \simeq A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr}$$

Extended to multi-particle systems

M.Luscher, NPB354(1991)531 C.-J.Lin et al., NPB619(2001)467 N.Ishizuka, PoS LAT2009 (2009) 119 CP-PACS Coll., PRD71(2005)094504

S. Aoki et al., PRD88(2013)014036

Consider the wave function at "interacting region"

$$(\nabla^2 + k^2)\psi(\mathbf{r}) = m \int d\mathbf{r'} U(\mathbf{r}, \mathbf{r'})\psi(\mathbf{r'}), \quad \mathbf{r} < R$$

- U(r,r'): faithful to the phase shift by construction
 - U(r,r'): E-independent, while non-local in general
 - Non-locality \rightarrow derivative expansion

<u>Signal/Noise issue w/ ~continuum on Lat</u>

- Challenge in traditional Lat calc → ground state saturation
 - S/N gets worse for larger mass number A & light quark mass & $t \rightarrow \infty$

• Time-dependent HAL method

N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437

- E-indep potential $\leftarrow \rightarrow$ (elastic) Excited states share the same potential

$$\left(-rac{\partial}{\partial t}+rac{1}{4m}rac{\partial^2}{\partial t^2}-H_0
ight)R(m{r},t)=\int dm{r}'U(m{r},m{r}')R(m{r}',t)\ R(m{r},t)\equiv C_{NN}(m{r},t)/C_N(t)^2$$

Ground state saturation
 Elastic states saturation

Coupled Channel systems

(beyond inelastic threshold)

- Essential in many interesting physics
 - H-dibaryon ($\Lambda\Lambda$ -N Ξ - $\Sigma\Sigma$), Zc-exotic mesons, etc.
- Coupled channel potentials in HAL method

Computational Challenge

• Enormous comput. cost for multi-baryons correlators

- Wick contraction (permutations) $\sim [(\frac{3}{2}A)!]^2$
- color/spinor contractions $\sim 6^A \cdot 4^A$ or $6^A \cdot 2^A$

- Unified Contraction Algorithm (UCA) TD, M.Endres, CPC184(2013)117

A novel method which unifies two contractions → drastic speedup

 $\times 192$ for ${}^{3}\text{H}/{}^{3}\text{He}$, $\times 20736$ for ${}^{4}\text{He}$, $\times 10^{11}$ for ${}^{8}\text{Be}$ (x

(x add'l. speedup)

See also subsequent works:

Detmold et al., PRD87(2013)114512 Gunther et al., PRD87(2013)094513

Code development

- Efficient implementation of UCA
- Many channels w/ L³ dof in NBS
- Performance on K @ 2048 node
 - ~15% of peak (~40 TFlops sustained)

(total of Hadron-Force code, w/o IO)

Strategy for phys point baryon forces

- Focus on the most important forces:
 - Notoriously noisy at phys point (even w/ t-dep HAL method)
 - Central and Tensor forces for all NN/YN/YY (2 octet baryons) in parity-even channel (S, D-waves)

Central Tensor

$$U(\vec{r}, \vec{r'}) = V_c(r) + S_{12}V_T(r) + \vec{L} \cdot \vec{S}V_{LS}(r) + \mathcal{O}(\nabla^2)$$

LO LO NLO (derivative expansion)

- Hyperon forces (YN/YY) provide precious "prediction"

Simulation Setup

- Nf = 2+1 clover fermion + Iwasaki gauge action
 - Stout smearing
 - Volume: 96⁴ ~= (8 fm)⁴
 - 1/a ~= 2.3 GeV (a ~= 0.085 fm)
 - m(pi) ~= 145 MeV, m(K) ~= 525 MeV
 - #traj ~= 2000 generated

(For details → Ukita's talk)

- Measurements
 - 4pt correlators for all 2-baryon systems are calculated
 - 52 channels in octet-baryon particle base (+ other hadron-hadron)
 - Wall source
 - Coulomb gauge fixing after stout smearing
 - Dirichlet BC (at t = Nt/2) to avoid the wrap around artifact
 - Forward/backward average is taken
 - Sloppy solver (almost exact compared to statistical err)
 - Relativistic correction term omitted in this preliminary analysis
 - #stat = 203 configs x 4 rotation x 12 src in this talk
 - (Objective: 400 configs x 4 rotation x 48 src)

-2 MeV (B.E.) ~= 20 MeV (K.E.) – 5 MeV (Central) – 17 MeV (Tensor) [AV8' phen. pot]

$$S_{12}(\hat{x}) = 3(\boldsymbol{\sigma}_1 \cdot \hat{\boldsymbol{x}})(\boldsymbol{\sigma}_2 \cdot \hat{\boldsymbol{x}}) - (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)$$

Tensor Force is the driving force for deuteron binding

Role in nuclei is being rediscovered

Tensor Force is clearly visible !

Tensor Force is clearly visible !

OPEP int !? (further study in progress)

Larger #stat (w/ larger t) desirable

Repulsive core observed

Long-range int still noisy

Larger #stat (w/ larger t) desirable

Repulsive core observed

Long-range int still noisy

Larger #stat (w/ larger t) desirable

<u>Summary</u>

- The 1st LQCD calc of Baryon Interactions at ~ phys. point
 - m(pi) ~= 145 MeV, L ~= 8fm, 1/a ~= 2.3GeV
 - Central & Tensor forces calculated for all NN/YN/YY in P=(+) channel
- HAL QCD method
 - t-dep HAL method avoids S/N issue by g.s. saturation
 - Suitable for coupled channel systems
 - Unified contraction algorithm for computations
- NN-forces
 - Tensor force is clearly visible
 - Repulsive core in Central forces, more #stat needed
- YN/YY-forces → next talks
- Prospects
 - Measurement in progress \rightarrow #stat will be increased ~x8 in FY'15
 - LS-forces, P=(-) channel, 3-baryon forces + other int. in future

18