Study of the conformal phase in the SU(3) gauge theory with domain-wall fermions

Jun Noaki (KEK) in collab. with G. Cossu (KEK), K-I. Ishikawa (Hiroshima Univ.), Y. Iwasaki and T. Yoshié (Univ. of Tsukuba) JICFuS

Study of conformal QCD as BSM candidate by Wilson fermions

Ishikawa, Iwasaki, Nakayama and Yoshie, 2012-

- SU(3) fundamental rep, $N_f = 7-16$
- phase structure in the simulation parameter space (κ, β)
- characteristics of the conformal phase
 - meson decays with modified Yukawa-type form

conjecture by RG argument : $G_H(t) = c t^{-\alpha}$ $\xrightarrow{V = \text{finite}}$ $G_H(t) = c t^{-\alpha} e^{-m_H t}$

• Z(3) -twisted Polyakov loop \leftarrow effective potential to 1-loop

N_f = 8 massless domain-wall fermions

- Iwasaki gauge action + original Shamir's kernel, M = 1.6
- $m_f = 0.0$, residual mass is negligibly small
- APBC in t-dir of fermion, PBC for others
- carried out on BlueGene/Q @ KEK

size β $8^{3}x32$ 2.0, 2.3, 2.6, 4.2, 4.7, 6.0 $16^{3}x64$ 2.6, 3.4, 4.2, 4.7, 6.0

- phase structure: confined ↔ conformal transition
- property of the conformal phase
- Polyakov loop \rightarrow twisted vacuum
- PP correlator → power law corrected Yukawa
 → location of IRFP
- Dirac spectrum \rightarrow anomalous dimension

very long thermalization / autocorrelation time in the conformal phase

 V_{eff} ^{1-loop}(*a*, *b*) has minima at $a_i = b_i = \pm 1/3 \text{ or } \pm 2/3 \text{ for } i = x, y, z$ in the conformal phase

predicted behaviors and β -shift depending on the size are observed.

thermalization: $|P_x| \approx |P_y| \approx |P_z|$ is a necessary cond.

P-P correlator (very preliminary)

• effective mass by $A \cosh(-m_{\text{eff}} t)$ at a glance, no plateau for larger β

• effective alpha & effective Yukawa-mass by $t^{-\alpha} e^{-mt}$

reasonable t-dependence \rightarrow well describes the data

• location of the infrared fixed point (IRFP) Ishikawa, Iwasaki, Nakayama and Yoshié, 2015

• y–dir • z–dir

t_dir

0.15

- scaled correlator: $G(\tau = t/s; L)$ [ref. scale *s*, latice size *L*]

at IRFP,
$$G(\tau,L) = \left(\frac{L'}{L}\right)^{3-2\gamma^{\star}} G(\tau,L')$$
 size independent m_{eff}

however, current data is not enough to conclude ...

Spectral density by the stochastic method

Giusti & Luscher, see S. Hashimoto's poster, as well

$$\rho(\lambda) = \frac{1}{2\delta V N_r} \sum_{i=1}^{N_r} \langle \xi_i^{\dagger} h_{\delta} (2D^{\dagger}D - 1)\xi_i \rangle \propto \lambda^{\alpha}$$

 $h_{\delta}(X)$ is a polynomial filter for a certain range of width δ

- suffers from severe finite size effect
- no condensation \rightarrow chiral symmetry unbroken

Summary

predicted vacuum structure observed w.r.t. Polyakov loop as well as a transition
modified Yukawa-form describes the correlator data, more statistics needed to conclude
obtaining anomalous dim. needs larger volume

Future plans

30

- locating IRFP by larger lattice
- study of other N_f 's
- study with the N_f = 2 finite temperature