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Density of states

e The density of states is the volume of phase-space available to the
system at given energy

(5) = [ 106155 - 1o )

e Partition function and observables can be computed using a simple
1-d integral

7(8) = / dsp(s)e=". )



LLR

o Recently proposed algorithm to compute the Density of States in
systems with continuum degrees of freedom.!

e Based on the simulation of the system in energy intervals.

o Converges to the true log-derivative of the DOS dp 2
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LLR

o Very efficient for simulation with metastabilities, e.g. 4d compact
U(1).

e First order phase transition S¢, (V) = B¢, (o0) + Zim;; B VK
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Generalised density of states

o At finite chemical potential we have
7_ /[D¢] = BSreldl+inSml4] (3)
e We can define a generalised density o states

Pa(s) = / [DS]6 (s — Sim[g]) e 519 (4)

e The partition function is the Fourier transform of P

Z(5.1) = / dsPy(s) e (5)



Bose gas at finite density.

e LLR was already tested on a Z3 spin model with complex action,
where it seems to work. 3

e The relativistic Bose gas is a different test since it is known to
undergo a second-order phase transition at u. and has continuum

degrees of freedom.

o Observables are independent from p below a threshold fi..
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Bose gas at finite density

e Continuum formulation

S[¢] = 0,00, p+(m*—1i2) | ¢ |? +1(d* 0ap—p0ad*)+ A | ¢ |* . (6)

e On the lattice the chemical potential is introduced as a vector
potential

S[e] = > (2d + m?) ¢y + M @Edx )+
(7)
a Zi:l (¢ieiﬂéy’4¢><+u + ¢i+ue#5V’A¢X)



Observables

e To quantify the severity of sign problem we are interested in the
expectation value of the phase

<e7$,m> — er(Sf (8)

e The density of particles is given by

dlogZ

(m ==,
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Generalized DOS results
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Why not a fft?

e The partition function is given by a fourier transform of the DOS.

2(5.) = [ dse*Pa(s) (10)

e P is not known exactly but up to noise coming from the Montecarlo
simulation.

e The fourier transform of white noise does not depend on the
frequency while Z(u) is a fast decaying function. The method
breaks at relatively small chemical potential.



Filtering the noise
e A much better alternative is a fit of the log-derivative of the density

of states. ‘
P=exp(d_ cix®) (11)

e The error is now in the coefficients and the fourier transform of
every power is a fast decaying function.
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Polynomial fit.

Polynomial fit to the DOS
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Evaluating the fourier transform

We still need to evaluate the fourier transform of

Z= [ exp(Y b p)s™ + ins)as (12)

i
Brute-force approach: use numerical integration with multi-precision
methods.

Projection on a base of L? with known fourier transform eg. Hermite
functions.

Numerical integration over the Lefschetz Thimble.



Projection on Hermite functions

FIVa(x)] = AnWa(x)
So that we can project the DOS on this base of functions

P(s) ~ Z cnWn(s)

We obtain Z as

Z(M) ~ Z Ancnwn(u)

(13)



Lefschetz Thimble

o Let's consider integrals of the type

z:/ e M dx (15)

— 00

where S(x) is holomorphyc.

e |t is possible to deform the integration path in such a way that
Z=Y me Sn=) / dze™5%(?) (16)
3 i

where z, are the fixed point i.e.9,S = 0. And Ji are the curves of
steepest descent.



Lefschetz Thimble

e The curves of steepest descent are parametric curves in the complex
plane given by the O.D.E.

%= —Re{d,5(z)}, y=+Im{9,5(z)} (17)

e my is the number of intersections between the curves of steepest
ascent and the original domain of integration.
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Conclusions

o We presented an application of the LLR algorithm to a system with
a severe sign problem.

e We believe that with this method we can extract meaningful
observable at finite density, at least if the shape of the DOS is
regular enough.

e Further studies and development are still needed to decide whether
is useful also for more realistic cases.
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