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Density of states

• The density of states is the volume of phase-space available to the
system at given energy

ρ(s) =

∫
[Dφ] δ(s − S [φ]). (1)

• Partition function and observables can be computed using a simple
1-d integral

Z (β) =

∫
dsρ(s)e−βs . (2)



LLR

• Recently proposed algorithm to compute the Density of States in
systems with continuum degrees of freedom.1

• Based on the simulation of the system in energy intervals.

• Converges to the true log-derivative of the DOS dρ
ds .2

1Langfeld, Lucini, Rago PhysRevLett.109.111601
2Langfeld, Lucini, Pellegrini, Rago in preparation.



LLR

• Very efficient for simulation with metastabilities, e.g. 4d compact
U(1).

• First order phase transition βCv (V ) = βCv (∞) +
∑kmax

k=1 BkV
−k
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14 1 1.011125(3) 0.91
12 1 1.011121(3) 2.42
12 2 1.011129(4) 0.67
10 1 1.011116(5) 7.44
10 2 1.011127(3) 0.60
8 1 1.011093(5) 90.26
8 2 1.011126(2) 0.62



Generalised density of states

• At finite chemical potential we have

Z =

∫
[Dφ] e−βSRe [φ]+iµSIm[φ] (3)

• We can define a generalised density o states

Pβ(s) =

∫
[Dφ] δ (s − SIm[φ]) e−βSRe [φ] (4)

• The partition function is the Fourier transform of P

Z (β, µ) =

∫
dsPβ(s)e iµs (5)



Bose gas at finite density.

• LLR was already tested on a Z3 spin model with complex action,
where it seems to work. 3

• The relativistic Bose gas is a different test since it is known to
undergo a second-order phase transition at µc and has continuum
degrees of freedom.

• Observables are independent from µ below a threshold µc .

3Gattringer, Torek PLB; Langfeld, Lucini PRL



Bose gas at finite density

• Continuum formulation

S [φ] = ∂µφ∂µφ+(m2−µ2) | φ |2 +µ(φ∗∂4φ−φ∂4φ∗)+λ | φ |4 . (6)

• On the lattice the chemical potential is introduced as a vector
potential

S [φ] =
∑

x(2d + m2)φ∗xφx + λ(φ∗xφx)2+

−
∑4

ν=1

(
φ∗xe
−µδν,4φx+ν + φ∗x+νe

µδν,4φx
) (7)



Observables

• To quantify the severity of sign problem we are interested in the
expectation value of the phase

〈e−SIm〉 = e−V δf (8)

• The density of particles is given by

〈n〉 =
d logZ

dµ
(9)



Generalized DOS results



Why not a fft?

• The partition function is given by a fourier transform of the DOS.

Z (β, µ) =

∫
dse iµsPβ(s) (10)

• P is not known exactly but up to noise coming from the Montecarlo
simulation.

• The fourier transform of white noise does not depend on the
frequency while Z (µ) is a fast decaying function. The method
breaks at relatively small chemical potential.



Filtering the noise

• A much better alternative is a fit of the log-derivative of the density
of states.

P = exp(
∑
i

cix
2i ) (11)

• The error is now in the coefficients and the fourier transform of
every power is a fast decaying function.



Polynomial fit.
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Evaluating the fourier transform

• We still need to evaluate the fourier transform of

Z =

∫
exp(

∑
i

ci (β, µ)s2i + iµs)ds (12)

• Brute-force approach: use numerical integration with multi-precision
methods.

• Projection on a base of L2 with known fourier transform eg. Hermite
functions.

• Numerical integration over the Lefschetz Thimble.



Projection on Hermite functions

• Ψn(x) = Hn(x)e−
x2

2

• F [Ψn(x)] = λnΨn(x)

• So that we can project the DOS on this base of functions

P(s) ∼
∑
n

cnΨn(s) (13)

• We obtain Z as
Z (µ) ∼

∑
n

λncnΨn(µ) (14)



Lefschetz Thimble

• Let’s consider integrals of the type

Z =

∫ ∞
−∞

e−S(x)dx (15)

where S(x) is holomorphyc.

• It is possible to deform the integration path in such a way that

Z =
∑
k

mke
−iSIm(zk )

∫
Jk

dze−SRe(z) (16)

where zk are the fixed point i.e.∂zS = 0. And Jk are the curves of
steepest descent.



Lefschetz Thimble

• The curves of steepest descent are parametric curves in the complex
plane given by the O.D.E.

ẋ = −Re {∂zS(z)} , ẏ = +Im {∂zS(z)} (17)

• mk is the number of intersections between the curves of steepest
ascent and the original domain of integration.
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Conclusions

• We presented an application of the LLR algorithm to a system with
a severe sign problem.

• We believe that with this method we can extract meaningful
observable at finite density, at least if the shape of the DOS is
regular enough.

• Further studies and development are still needed to decide whether
is useful also for more realistic cases.
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