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Renormalization Group Invariant (RGI) parameters

RG equations for running coupling and quark mass (mass-independent scheme)

µ
∂

∂q
ḡ(q)= β(ḡ)

ḡ→0∼ −ḡ3(b0 + b1ḡ
2 + b2ḡ

4 + . . .)

µ
∂

∂q
m(q)= τ(ḡ)

ḡ→0∼ −ḡ2(d0 + d1ḡ
2 + . . .)

b0, b1, d0 are universal and bi>1, dj>0 scheme-dependent coeff.s

integrated over renormalization scale q ∈ [µ,∞]

Λ ≡ µ
[
b0ḡ

2(µ)
]−b1/(2b20)

e−1/(2b0ḡ
2(µ)) exp

{
−
∫ ḡ(µ)

0

dg

[
1

β(g)
+

1

b0g3
− b1
b20g

]}

Mi ≡ mi(µ)
[
2b0ḡ

2(µ)
]−d0/(2b0)

exp

{
−
∫ ḡ(µ)

0

dg

[
τ(g)

β(g)
− d0

b0g

]}
encode information about fundamental parameters of QCD

defined without relying on perturbation theory

RGI mass independent of renormalisation scheme, (Λ trivial dep.)

allow for easy conversion (at high µ) between renorm. mass/coupling in diff. schemes
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4 + . . .)

µ
∂

∂q
m(q)= τ(ḡ)
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∫ ḡ(µ)

0

dg

[
1

β(g)
+

1

b0g3
− b1
b20g

]}

Mi ≡ mi(µ)
[
2b0ḡ
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General strategy

Capitani et.al.[1]

1 compute bare current quark mass at some hadronic scale µhad, renormalize & take CL

mi(µhad) = lim
a→0

[
ZA(g2

0)

ZP(g2
0 , aµhad)

mi

fhad

]
× fphys

had

using some scale-setting observable fhad ∈ {fK, . . .}
2 connect to RGI mass

Mi =
M

m(µhad)
×mi(µhad)

RG running factor to µ =∞ (continuum, flavour-independent)
hadronic computation
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Previous continuum results
. . . with dynamical non-perturbative O(a) improved Wilson fermions

employing the Schrödinger functional (SF) as intermediate renormalization scheme, µ = 1/L

Nf = 2: (plaquette gauge action)

ALPHA [2, 3]

M
m(µ)

= 1.308(16)

Mud

Ms = 138(3)(1) MeV

fhad ≡ fK = 155MeV

Nf = 3: (Iwasaki gauge action)

PACS-CS, CP-PACS/JLQCD [4, 5]

0 1 10 100 1000

µ/Λ
SF

0.2

0.4

0.6

0.8

1

m
S

F
(µ

)/
M

Non−perturbative running mass in SF scheme

NP running mass

PT 2/3−loops

M
m(µ)

Mud = 3.49(34) MeV

Ms = 109.0(3) MeV

fhad ≡ mK̂ = 495.7MeV
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Previous continuum results
A closer look, error budget

Nf = 2 (plaquette gauge action)

Ms =
M

m(µhad)
×ms(µhad)

{
M
m(µ)

= 1.308(16) , δRG = 1.2%

Ms = 138(3)(1) MeV , δM = 2.3%

⇓

mMS
s (2 GeV) = 102(3)(1) MeV , δ = 3.1%

PDG’14 : 93.5(2.5) MeV , δ = 2.7%

AIM FOR δ = 2% FOR NEW 3-FLAVOUR COMPUTATION.

⇒ δM < 2%

we expect improvement on the hadronic part, Nf = 3 CLS ensembles (open b.c.),
but hard to quantify today

⇓

can systematically improve on the RG running part
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Computing M/m(µhad)

Compute

M

m(µhad)
∝

[
N∏
i

σP(ui)

]−1

Step-scaling function:

σP(u) = exp

[
−
∫ ḡ(µ/2)

ḡ(µ)

dg
τ(g)

β(g)

]
ḡ2(µ)=u

= lim
a→0

ΣP(u, a/L)

Lattice step-scaling function:

ΣP(u, a/L) =
ZP(g0, 2L/a)

ZP(g0, L/a)

can be 1-loop improved (plaq. action):

ΣP(u, a/L) → Σ
(1)
P (u, a/L) =

ΣP(u, a/L)

1 + δP(a/L)u

Renormalization condition:[
ZP(g0, L/a) fP(L/2)√

3f1

]θ
m=0

= c3(θ, a/L)

at fixed values of u ∈ {uSF, uGF} but vanishing boundary field, T/L = 1, θ = 0.5
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But things become more complicated

more accurate results demand even better control of systematics such as
boundary and bulk O(a) improvement
tuning to critical mass and fixed coupling
. . .

strategy of running coupling (ALPHA’14 [6]) imposes (computational) constraints:

Lswi

g2
SF(Lswi)g2

GF(Lswi)

1 10 100 1000

1

2

3

4

5

6

µ/ΛSF

g2

0
2

2.1

2.2

2.3

(a/L)2

g2SF ≡ lima→0 Ψ(uswi
GF, a/L)

Lswi

1 10 100 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

µ/ΛSF

M

m(µ)

and requires precise determination of scheme-switching scale µswi = 1/Lswi

GF SF SF-PT

M

m(µhad)
=
m(µswi)

m(µhad)
× m(µpert)

m(µswi)
× M

m(µpert)

kink
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Lines of constant physics u = const.

uGF : κGF
crit(β), uGF in progress (see previous talk by Stefan Sint)

uSF : uSF ≡ ufit
SF(β) ⇒ β ⇒ κSF

crit ≡ κfit
crit(β)

fixed coupling uSF ∈ {1.110, 1.18446, 1.26569, 1.3627, 1.4808, 1.6173, 1.7943, 2.012}

uSF L/a β κSF
crit ufit

SF

1.1100 6 8.5403(55) 0.1323361(12) 1.1100(12)
1.1100 8 8.7325(72) 0.1321338(13) 1.1100(15)
1.1100 12 8.995(11) 0.1318617(10) 1.1100(24)

...

1.4808 6 7.2618(28) 0.1339337(13) 1.4808(11)
1.4808 8 7.4424(38) 0.1336745(11) 1.4808(15)
1.4808 12 7.7299(89) 0.13326299(69) 1.4808(35)

...

2.0120 6 6.2735(44) 0.1355713(17) 2.0120(32)
2.0120 8 6.4680(51) 0.1352362(15) 2.0120(39)
2.0120 12 6.7299(68) 0.1347591(10) 2.0120(49)
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Step-scaling function I ¡PRELIMINARY!

0.9100

0.9150

0.9200
uSF = 2.012 ΣP(uSF, a/L)

Σ
(1)
P (uSF, a/L)

0.9350

0.9400

0.9450

uSF = 1.4808

ΣP(uSF, a/L)

Σ
(1)
P (uSF, a/L)

0 0.005 0.01 0.015 0.02 0.025

0.9550

0.9600

0.9650
uSF = 1.11

(a/L)2

ΣP(uSF, a/L)

Σ
(1)
P (uSF, a/L)

σP= 0.9173(11)(19)sys

σP= 0.9160(11)(8)sys

σP= 0.9426(8)(17)sys

σP= 0.9416(8)(9)sys

σP= 0.9584(9)(17)sys

σP= 0.9576(9)(9)sys

We will add the step L/a = 16→ 32 to neglect coarsest point.
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Step-scaling function II ¡PRELIMINARY!

statistical accuracy in continuum limit: ∆[σP] . 1h

statistical error from tuning not propagated yet, but
systematic deviation w.r.t. 2-pt weighted avg.: δsys . 1h

SSF: Nf = 2 vs. Nf = 3

Nf = 2 data from ALPHA’12 [2]

innermost error = statistical

outermost error = stat.+sys.

solid line = 2/3-loop PT

Nf = 3 data, see previous slide

systematic errors seem better
controlled than for Nf = 2
5 more data points on the way

assuming ∆[σP(ui)]total = 2h (i = 1, . . . , N) we can naively/conservatively expect:

∆[M/m(µhad)] '
N∏
i

∆[σP(ui)] '
√
N · 2h '

{
0.49% for N = 6 (as for Nf = 2)

0.63% for N = 10
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Recap & next steps

RG running mass in SF-coupling scheme:

current results for σP(uiSF) (small-coupling regime) look very promising

5 remaining values from L/a = 6, 8, 12 within next 2-3 months

better estimate of systematic errors after including L/a = 16 in the long term

. . . total error in this scheme may become negligble compared to large-couplung regime.

RG running mass in GF-coupling scheme: uncharted waters

will share gauge configurations with running coupling project
 correlations need to be taken into account
but data taking along the way almost for free

simulations get more expensive towards larger volumes / couplings
 impact on statistics unknown as of yet

1-loop improvement term δP not known  larger systematic errors?

ToDo:

better understanding of NP scheme-switching step on general grounds, . . .
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Summary

presented current status of RG running part to compute RGI quark masses in 3-flavour QCD

standard techniques used and systematically improved (κcrit(β), . . .)

more complicated RG pattern due to scheme-switch at intermediate scale µswi

results in SF-scheme at small coupling are very encouraging

an error reduction by 50% compared to Nf = 2 seems possible

other projects, such as HQET (mb), will profit directly from accurate estimates of
M/m(µhad)

THANK YOU FOR

YOUR ATTENTION!
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