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Introduction
CP violation and nEDM

CP violation needed in the universe.
Observed baryon asymmetry: nB/nγ = 6.1+0.3

−0.2 × 10−10.
WMAP + COBE 2003

Without CP violation, freezeout ratio: nB/nγ ≈ 10−20.
Kolb and Turner, Front. Phys. 69 (1990) 1.

Either asymmetric initial conditions or baryogenesis!
Sufficiently asymmetric initial conditions kills inflation.

Sakharov Conditions Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.

Baryon Number violation
C, CP and T violation
Out of equilibrium evolution
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Introduction
Standard Model CP Violation

Two sources of CP violation in the Standard Model.
Complex phase in CKM quark mixing matrix.

Too small to explain baryon asymmetry
Gives a tiny (∼ 10−32 e-cm) contribution to nEDM

Dar arXiv:hep-ph/0008248.
CP-violating mass term and effective ΘGG̃ interaction related
to QCD instantons

Effects suppressed at high energies
nEDM limits constrain Θ . 10−10

Crewther et al., Phys. Lett. B88 (1979) 123.

Contributions from beyond the standard model
Needed to explain baryogenesis
May have large contribution to EDM
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Introduction
Form Factors

Vector form-factors
Dirac F1, Pauli F2, Electric dipole F3, and Anapole FA
Sachs electric GE ≡ F1 − (q2/4M2)F2 and magnetic GM ≡ F1 + F2

〈N |Vµ(q)|N〉 = uN

[
γµ F1(q2) + i

[γµ, γν ]
2 qν

F2(q2)
2mN

+ (2imNγ5qµ − γµγ5q
2) FA(q2)

m2
N

+ [γµ, γν ]
2 qνγ5

F3(q2)
2mN

]
uN

The charge GE(0) = F1(0) = 0.
GM (0)/2MN = F2(0)/2MN is the (anomalous) magnetic dipole moment.
F3(0)/2mN is the electric dipole moment.
FA and F3 violate P; F3 violates CP.
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Introduction
Projection

The three point function we calculate is
N ≡ d̄cγ5

1 + γ4

2
u d

〈Ω|N(~0, 0)Vµ(~q, t)N†(~p, T )|Ω〉 = uNe
−mNt 〈N|Vµ(q)|N′〉 e−EN′ (T−t)uN

We project onto only one component of the neutron spinor with
P =

1
2

(1 + γ4)(1 + iγ5γ3)

Noting that in presence of CP violation uNuN = eiαNγ5 (i/p +mN )eiαNγ5

and assuming N ′ = N , we can extract:
TrP〈Ω|NV3N

†|Ω〉 ∝ imN q3GE

+ αNmN (EN −mN )F1 + αN [mN (EN −mN ) +
q2

3
2

]F2

− 2i (q2
1 + q

2
2)FA −

q2
3
2
F3

Tanmoy Bhattacharya nEDM from qCEDM



Introduction
Renormalization and Mixing

Lattice Calculation
Numerical Tests

Conclusions

CP violation and nEDM
Standard Model CP Violation
Form Factors
Projection
Effective Field Theory
BSM Operators

Introduction
Effective Field Theory

Energy

TeV

atomic

nuclear

QCD

neutron EDM

   EDMs of
diamagnetic
 atoms (Hg)

fundamental CP−odd phases

C   ,C qe

NNπg 

de

    EDMs of

   atoms (Tl)
paramagnetic

C    S,P,T

              

qq

~
q,d  , d  , wqθ

Pospelov and Ritz, Ann. Phys. 318 (2005) 119.
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Introduction
BSM Operators

Standard model CP violation in the weak sector.
Strong CP violation from dimension 3 and 4 operators anomalously
small.

Dimension 3 and 4:
CP violating mass ψ̄γ5ψ.
Toplogical charge GµνG̃µν .

Suppressed by vEW/M
2
BSM:

Electric Dipole Moment ψ̄Σµν F̃µνψ.
Chromo Dipole Moment ψ̄ΣµνG̃µνψ.

Suppressed by 1/M2
BSM:

Weinberg operator (Gluon chromo-electric moment):
GµνGλνG̃µλ.
Various four-fermi operators.
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Renormalization and Mixing
Vacuum Alignment and Phase Choice

CP and chiral symmetry do not commute. Outer automorphism:
CPχ ≡ χ−1CPχ also a CP.

ψCPL = iγ4Cψ̄
T
L and ψCPR = iγ4Cψ̄

T
R.

ψχL = eiχψL and ψχR = e−iχψR

ψ
CPχ
L = e−2iχiγ4Cψ̄

T
L and ψCPχR = e+2iχiγ4Cψ̄

T
R

Consider the chiral and CP violating parts of the action

L ⊃ dαi Oαi

where i is flavor and α is operator index.
Consider only one chiral symmetric CP violating term: ΘGG̃

Tanmoy Bhattacharya nEDM from qCEDM



Introduction
Renormalization and Mixing

Lattice Calculation
Numerical Tests

Conclusions

Vacuum Alignment and Phase Choice
Operator Basis
RI-S̃MOM scheme
Connection to MS scheme

Convert to polar basis

di ≡ |di|eiφi ≡
∑
α d

α
i 〈Ω| ImOαi |π〉∑

α〈Ω| ImOαi |π〉

Then CP violation is proportional to:

d̄Θ̄Re d
α
i

di
− |di| Im

dαi
di

with
1
d̄
≡
∑
i

1
di

Θ̄ = Θ−
∑
i

φi

CP violation depends on Θ̄ and on a mismatch of phases
between dαi and di.
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Renormalization and Mixing
Operator Basis

igψ̄σ̃µνGµνt
aψ ∂2

(
ψ̄iγ5t

aψ
)

ie
2 ψ̄σ̃

µνFµν {Q, ta}ψ

Tr
[
MQ2ta

] 1
2 F̃µνF

µν Tr [Mta] 1
2G̃

a
µνG

µνa

Tr [Mta] ∂µ
(
ψ̄γµγ5ψ

)
1
2∂µ

(
ψ̄γµγ5 {M, ta}ψ

)∣∣∣
traceless

1
2 ψ̄iγ5

{
M2, ta

}
ψ Tr

[
M2] ψ̄iγ5t

aψ

Tr [Mta] ψ̄iγ5Mψ

iψ̄Eγ5t
aψE Re ∂µ

[
ψ̄Eγ

µγ5t
aψ
]

Re ψ̄γ5/∂t
aψE Re ie

2 ψ̄ {Q, t
a} /A(γ)

γ5ψE
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Renormalization and Mixing
RI-S̃MOM scheme

(
O
N

)
ren

=
(
ZO ZON
0 ZN

)(
O
N

)
bare

O: Gauge-invariant operators, does not vanish by equation of
motion.
N: Gauge-dependent operators, restricted by BRST, vanish by
equation of motion.
Impose conditions on matrix elements of quarks and gluons:

Use MS quark masses in the expansion.
Three point functions at p2 = p′2 = q2 = −Λ2 � 0 (RI-SMOM).

Four point functions at p2 = p′2 = k2 = q2 = s = u = t/2 = −Λ2.

This choice eliminates non-1PI contributions. (See arXiv:1502.07325 [hep-ph]).
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Renormalization and Mixing
Connection to MS scheme
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Lattice Calculation
Technique

The quark chromo-EDM operator is a quark bilinear.
Schwinger source method: Add it to the Dirac operator in the
propagator inversion routine:

/D +m− r

2D
2 + cswΣµνGµν−→ /D +m− r

2D
2 + Σµν(cswGµν + iεG̃µν)

The fermion determinant gives a ‘reweighting factor’

det( /D +m− r
2D

2 + Σµν(cswGµν + iεG̃µν)
det( /D +m− r

2D
2 + cswΣµνGµν)

= exp Tr ln
[
1 + iεΣµνG̃µν( /D +m− r

2D
2 + cswΣµνGµν)−1

]
≈ exp

[
iεTr ΣµνG̃µν( /D +m− r

2D
2 + cswΣµνGµν)−1

]
.
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Lattice Calculation
Three-point function

eiε ×
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
The chromoEDM operator is dimension 5.
Uncontrolled divergences unless ε . 4πaΛQCD ∼ 1.
Need to check linearity.
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Lattice Calculation
Propagator inversion

Using BiCGStab in Chroma (Clover on HISQ a ≈ 0.12fm, mπ ≈ 310MeV)

Cost of /D increases by about 7%.
Condition number changes by less than 5%.
Can use ε = 0 as initial guess.

Each extra inversion less than the cost of the ε = 0 inversion.

Accuracy ε = 0.005 ε = 0.01
10−8 85% 86%
10−3 51% 66%

5× 10−3 28% 45%

Calculation of connected EDM measurement on each configuration
is about 1.5 times the cost of V/A form factors measurements.
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Propagator
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Linearity
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F3 Form factor
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Conclusions
Future

Disconnected diagrams.
Continuum limit.
Most divergent mixing with αs

a2 ψ̄γ5ψ.

nEDM due to this same as due to αs
ma2G · G̃.

Current estimates of nEDM due to
CEDMMS ⇒ O(1)
αs
ma2 ΘG · G̃⇒ O(0.1)

5MeVa2O(10−3)e-fm = O(1)

at a ≈ 0.1fm.

Expect O(1–10) cancellation.
Fermions with better chiral symmetry.
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