Introduction Renormalization and Mixing Lattice Calculation Numerical Tests Conclusions

Neutron Electric Dipole Moment from quark Chromoelectric Dipole Moment

Tanmoy Bhattacharya a,b

Vincenzo Cirigliano^a Rajan Gupta^a Emanuele Mereghetti^a Boram Yoon^a

 $^a {\sf Los}$ Alamos National Laboratory

^bSanta Fe Institute

July 16, 2015

CP violation and nEDM Standard Model CP Violation Form Factors Projection Effective Field Theory BSM Operators

Introduction

CP violation and nEDM

CP violation needed in the universe.

Observed baryon asymmetry:
$$n_B/n_\gamma = 6.1^{+0.3}_{-0.2} \times 10^{-10}$$
.

WMAP + COBE 2003

Without CP violation, freezeout ratio: $n_B/n_{\gamma} \approx 10^{-20}$.

Kolb and Turner, Front. Phys. 69 (1990) 1.

Either asymmetric initial conditions or baryogenesis! Sufficiently asymmetric initial conditions kills inflation.

Sakharov Conditions

Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.

- Baryon Number violation
- C, CP and T violation
- Out of equilibrium evolution

CP violation and nEDM Standard Model CP Violation Form Factors Projection Effective Field Theory BSM Operators

Introduction Standard Model CP Violation

Two sources of CP violation in the Standard Model.

- Complex phase in CKM quark mixing matrix.
 - Too small to explain baryon asymmetry
 - ullet Gives a tiny $(\sim 10^{-32}\, {
 m e-cm})$ contribution to <code>nEDM</code>

Dar arXiv:hep-ph/0008248.

- \bullet CP-violating mass term and effective ΘGG interaction related to QCD instantons
 - Effects suppressed at high energies
 - nEDM limits constrain $\Theta \lesssim 10^{-10}$

Crewther et al., Phys. Lett. B88 (1979) 123.

Contributions from beyond the standard model

- Needed to explain baryogenesis
- May have large contribution to EDM

CP violation and nEDM Standard Model CP Violation Form Factors Projection Effective Field Theory

Introduction

Form Factors

Vector form-factors

Dirac F_1 , Pauli F_2 , Electric dipole F_3 , and Anapole F_A

Sachs electric $G_E \equiv F_1 - (q^2/4M^2)F_2$ and magnetic $G_M \equiv F_1 + F_2$

$$\begin{split} \langle N | V_{\mu}(q) | N \rangle &= \overline{u}_{N} \left[\gamma_{\mu} \ F_{1}(q^{2}) + i \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \ \frac{F_{2}(q^{2})}{2m_{N}} \right. \\ &+ \left. \left(2i \ m_{N} \gamma_{5} q_{\mu} - \gamma_{\mu} \gamma_{5} q^{2} \right) \frac{F_{A}(q^{2})}{m_{N}^{2}} \right. \\ &+ \left. \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \gamma_{5} \ \frac{F_{3}(q^{2})}{2m_{N}} \right] u_{N} \end{split}$$

- The charge $G_E(0) = F_1(0) = 0$.
- $G_M(0)/2M_N=F_2(0)/2M_N$ is the (anomalous) magnetic dipole moment.
- $F_3(0)/2m_N$ is the electric dipole moment. F_A and F_3 violate P; F_3 violates CP.

Introduction

Projection

The three point function we calculate is

$$\begin{split} N &\equiv \overline{d}^c \gamma_5 \frac{1+\gamma_4}{2} u \ d \\ \langle \Omega | N(\vec{0},0) V_\mu(\vec{q},t) N^\dagger(\vec{p},T) | \Omega \rangle &= u_N e^{-m_N t} \ \langle N | V_\mu(q) | N' \rangle \ e^{-E_{N'}(T-t)} \overline{u}_N \end{split}$$

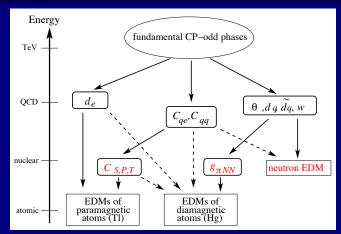
We project onto only one component of the neutron spinor with

$$\mathcal{P} = \frac{1}{2}(1 + \gamma_4)(1 + i\gamma_5\gamma_3)$$

Noting that in presence of CP violation $u_N \overline{u}_N = e^{i\alpha_N \gamma_5} (i p + m_N) e^{i\alpha_N \gamma_5}$ and assuming N' = N, we can extract:

$$\begin{split} \operatorname{Tr} \mathcal{P} \langle \Omega | N V_3 N^\dagger | \Omega \rangle & & \propto & i m_N q_3 G_E \\ & & + \alpha_N m_N (E_N - m_N) F_1 + \alpha_N [m_N (E_N - m_N) + \frac{q_3^2}{2}] F_2 \\ & & - 2i \left(q_1^2 + q_2^2\right) F_A - \frac{q_3^2}{2} F_3 \end{split}$$

Introduction Effective Field Theory



CP violation and nEDM Standard Model CP Violation Form Factors Projection Effective Field Theory BSM Operators

Introduction BSM Operators

Standard model CP violation in the weak sector. Strong CP violation from dimension 3 and 4 operators anomalously small.

- Dimension 3 and 4:
 - CP violating mass $\bar{\psi}\gamma_5\psi$.
 - Toplogical charge $G_{\mu\nu}G^{\mu\nu}$.
- Suppressed by $v_{\rm EW}/M_{\rm BSM}^2$:
 - Electric Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{F}^{\mu\nu} \psi$.
 - Chromo Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{G}^{\mu\nu} \psi$.
- Suppressed by $1/M_{
 m BSM}^2$:
 - Weinberg operator (Gluon chromo-electric moment): $G_{\mu\nu}G_{\lambda\nu}\tilde{G}_{\mu\lambda}$.
 - Various four-fermi operators.

Renormalization and Mixing Vacuum Alignment and Phase Choice

CP and chiral symmetry do not commute. Outer automorphism: ${\rm CP}_\chi \equiv \chi^{-1} {\rm CP} \chi$ also a CP.

- $\psi_L^{CP} = i \gamma_4 C \bar{\psi}_L^T$ and $\psi_R^{CP} = i \gamma_4 C \bar{\psi}_R^T$.
- $\psi^\chi_L = e^{i\chi}\psi_L$ and $\psi^\chi_R = e^{-i\chi}\psi_R$
- $\psi_L^{CP_\chi}=e^{-2i\chi}i\gamma_4C\bar{\psi}_L^T$ and $\psi_R^{CP_\chi}=e^{+2i\chi}i\gamma_4C\bar{\psi}_R^T$

Consider the chiral and CP violating parts of the action

$$\mathcal{L} \supset d_i^{\alpha} O_i^{\alpha}$$

where i is flavor and $\boldsymbol{\alpha}$ is operator index.

Consider only one chiral symmetric CP violating term: $\Theta G \tilde{G}$

Convert to polar basis

$$d_{i} \equiv |d_{i}|e^{i\phi_{i}} \equiv \frac{\sum_{\alpha} d_{i}^{\alpha} \langle \Omega | \mathcal{I} m O_{i}^{\alpha} | \pi \rangle}{\sum_{\alpha} \langle \Omega | \mathcal{I} m O_{i}^{\alpha} | \pi \rangle}$$

Then CP violation is proportional to:

$$ar{d}ar{\Theta}\,\mathcal{R}e\,rac{d_i^lpha}{d_i}-|d_i|\,\mathcal{I}m\,rac{d_i^lpha}{d_i}$$

with

$$\frac{1}{\bar{d}} \equiv \sum_{i} \frac{1}{d_{i}} \qquad \bar{\Theta} = \Theta - \sum_{i} \phi_{i}$$

CP violation depends on Θ and on a *mismatch* of phases between d_i^{α} and d_i .

Renormalization and Mixing Operator Basis

$$\begin{split} &ig\bar{\psi}\tilde{\sigma}^{\mu\nu}G_{\mu\nu}t^{a}\psi \qquad \partial^{2}\left(\bar{\psi}i\gamma_{5}t^{a}\psi\right) \\ &\frac{ie}{2}\bar{\psi}\tilde{\sigma}^{\mu\nu}F_{\mu\nu}\left\{Q,t^{a}\right\}\psi \\ &\operatorname{Tr}\left[MQ^{2}t^{a}\right]\frac{1}{2}\bar{F}_{\mu\nu}F^{\mu\nu} \qquad \operatorname{Tr}\left[Mt^{a}\right]\frac{1}{2}\bar{G}^{a}_{\mu\nu}G^{\mu\nu a} \\ &\operatorname{Tr}\left[Mt^{a}\right]\partial_{\mu}\left(\bar{\psi}\gamma^{\mu}\gamma_{5}\psi\right) \quad \frac{1}{2}\partial_{\mu}\left(\bar{\psi}\gamma^{\mu}\gamma_{5}\left\{M,t^{a}\right\}\psi\right)\Big|_{\operatorname{traceless}} \\ &\frac{1}{2}\bar{\psi}i\gamma_{5}\left\{M^{2},t^{a}\right\}\psi \qquad \operatorname{Tr}\left[M^{2}\right]\bar{\psi}i\gamma_{5}t^{a}\psi \\ &\operatorname{Tr}\left[Mt^{a}\right]\bar{\psi}i\gamma_{5}M\psi \\ &i\bar{\psi}_{E}\gamma_{5}t^{a}\psi_{E} \qquad \operatorname{Re}\partial_{\mu}\left[\bar{\psi}_{E}\gamma^{\mu}\gamma_{5}t^{a}\psi\right] \\ &\operatorname{Re}\bar{\psi}\gamma_{5}\partial\!\!\!\!/ t^{a}\psi_{E} \qquad \operatorname{Re}\frac{ie}{2}\bar{\psi}\left\{Q,t^{a}\right\}A\!\!\!\!/^{(\gamma)}\gamma_{5}\psi_{E} \end{split}$$

Renormalization and Mixing RI-ŠMOM scheme

$$\left(\begin{array}{c}O\\N\end{array}\right)_{\mathrm{ren}}=\left(\begin{array}{cc}Z_O&Z_{ON}\\0&Z_N\end{array}\right)\left(\begin{array}{c}O\\N\end{array}\right)_{\mathrm{bare}}$$

O: Gauge-invariant operators, does not vanish by equation of motion.

N: Gauge-dependent operators, restricted by BRST, vanish by equation of motion.

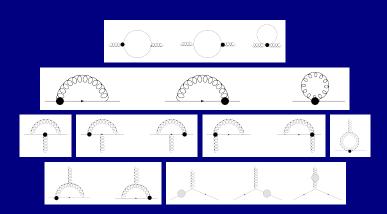
Impose conditions on matrix elements of quarks and gluons:

- lacksquare Use $\overline{
 m MS}$ quark masses in the expansion.
- Three point functions at $p^2=p'^2=q^2=-\Lambda^2\ll 0$ (RI-SMOM).
- Four point functions at $p^2=p'^2=k^2=q^2=s=u=t/2=-\Lambda^2$.

This choice eliminates non-1PI contributions. (See arXiv:1502.07325 [hep-ph]).

Vacuum Alignment and Phase Choice Operator Basis RI- $\bar{S}MOM$ scheme Connection to MS scheme

Renormalization and Mixing Connection to $\overline{\rm MS}$ scheme



Lattice Calculation

Technique

The quark chromo-EDM operator is a quark bilinear. Schwinger source method: Add it to the Dirac operator in the propagator inversion routine:

$$D + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu} \longrightarrow D + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon\tilde{G}_{\mu\nu})$$

The fermion determinant gives a 'reweighting factor'

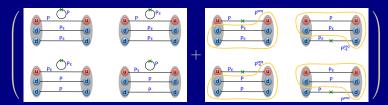
$$\frac{\det(\cancel{D} + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon G_{\mu\nu})}{\det(\cancel{D} + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})}$$

$$= \exp \operatorname{Tr} \ln \left[1 + i\epsilon \Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\cancel{D} + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1} \right]$$

$$\approx \exp \left[i\epsilon \operatorname{Tr} \Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\cancel{D} + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1} \right].$$

Lattice Calculation

Three-point function



The chromoEDM operator is dimension 5.

Uncontrolled divergences unless $\epsilon \lesssim 4\pi a \Lambda_{\rm QCD} \sim 1.$

Need to check linearity.

Lattice Calculation

Propagator inversion

Using BiCGStab in Chroma (Clover on HISQ $a\approx 0.12$ fm, $m_\pi \approx 310$ MeV)

- Cost of \mathbb{D} increases by about 7%.
- Condition number changes by less than 5%.
- Can use $\epsilon = 0$ as initial guess.

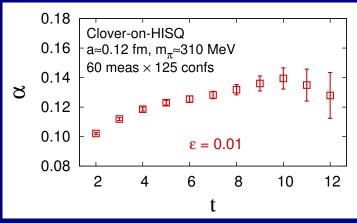
Each extra inversion less than the cost of the $\epsilon=0$ inversion.

Accuracy	$\epsilon = 0.005$	$\epsilon = 0.01$
10^{-8}	85%	86%
10^{-3}	51%	66%
5×10^{-3}	28%	45%

Calculation of connected EDM measurement on each configuration is about 1.5 times the cost of V/A form factors measurements.

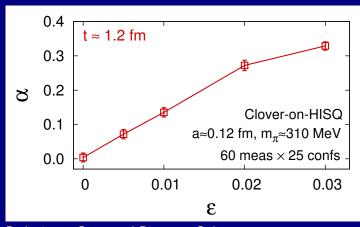
Numerical Tests

Propagator



Preliminary; Connected Diagrams Only

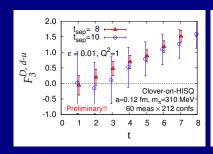
Numerical Tests Linearity

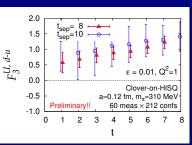


Preliminary; Connected Diagrams Only

Numerical Tests

 F_3 Form factor





Preliminary; Connected Diagrams Only

Conclusions

Future

- Disconnected diagrams.
- Continuum limit.

Most divergent mixing with $\frac{\alpha_s}{a^2}\bar{\psi}\gamma_5\psi$.

nEDM due to this same as due to $\frac{\alpha_s}{ma^2}G \cdot \hat{G}$.

Current estimates of nEDM due to

• CEDM^{MS}
$$\Rightarrow O(1)$$

•
$$\frac{\alpha_s}{ma^2}\Theta G \cdot \tilde{G} \Rightarrow \frac{O(0.1)}{5 \text{MeV} a^2} O(10^{-3}) \text{e-fm} = O(1)$$

at $a \approx 0.1 \text{fm}$.

Expect O(1-10) cancellation.

Fermions with better chiral symmetry.