$K\pi$ and $\pi\pi$ scattering

Gordon Donald (in collaboration with G. Bali, S. Collins, M. Göckeler, C. Lang, A. Schäfer)

Universität Regensburg

14 July 2015

Gordon Donald (Regensburg)

Resonances in $K\pi$ and $\pi\pi$ scattering

14 July 2015 1 / 13

- Talk is about resonances appearing in $\pi\pi$ and $K\pi$ scattering.
- In lattice QCD, we like to deal with stable hadrons.
- Particles such as ρ or K^* decay strongly and cannot be treated a stable.
- Strong decay widths are about 150 or 50 MeV, depending on which one it is.
- The two processes are analoguous, both conceptually and in some calculation steps.

▲□► ▲ □► ▲

- Various studies have been done before on $I = 1\pi\pi$ and $I = 1/2K\pi$ scattering.
- Resonance behaviour is observed.
- We are close to the physical pion mass.
- Here, $2m_\pi < m_
 ho$ and $m_\pi + m_K < m_{K^*} \ (2\sqrt{m_\pi^2 + (2\pi/L)^2} < m_
 ho).$
- We use two lattice sizes $V = 48^3 \times 64$ and 64^4 with $N_f = 2$, $a \simeq 0.071$ fm, $m_\pi \simeq 150$ MeV.
- We work on 'medium sized' lattices (3.5, 4.5 fm), with slightly smaller than ideal $m_{\pi}L$.

= nac

イロト 不得下 イヨト イヨト

- Channels of interest are I=1 $\pi\pi$ and I=1/2 $K\pi$.
- We expect there is a resonance in these channels and want to study it.
- Use 2-particle operators.

1

$$\pi(p_1)\pi(p_2) = \pi^+(p_1)\pi^-(p_2) - \pi^-(p_1)\pi^+(p_2)$$

$$\pi(p_1)K(p_2) = \sqrt{\frac{2}{3}}\pi^+(p_1)K^0(p_2) - \sqrt{\frac{1}{3}}\pi^0(p_1)K^+(p_2)$$

- Also corresponding 1-particle operators $\rho(P)$ and $K^*(P)$ made with γ_{μ} , $\gamma_{\mu}\gamma_t$, ∇_{μ} .
- Aim to determine resonance parameters.

- Besides having two volumes, we also use moving frames to increase the number of points in *W_{CM}* we can access.
- To extract the resonance parameters, we need enough data in the region of the resonance.
- Stochastic sources: to generate propagators required for all the 2 \rightarrow 2 and 2 \rightarrow 1 correlations, this needs sequential inversions.
- This means we have to project onto momentum for the sequential sources.

= nac

イロト 不得下 イヨト イヨト

$\pi\pi$				
L	Р	Irrep	$\mathcal{O}_{\pi\pi}$	$\mathcal{O}_{ ho}$
48	(0,0,0)	T_1	$\pi(1,0,0)\pi(-1,0,0)$	ρ_{μ}
48	(0, 0, 1)	Е	$\pi(1,0,0)\pi(-1,0,1)-\pi(-1,0,0)\pi(1,0,1)$	ρ_x, ρ_y
48	(0, 1, 1)	A_1	$\pi(1,0,0)\pi(-1,1,1)+\pi(-1,0,0)\pi(1,1,1)$	$\rho_y + \rho_z$
48	(0, 1, 1)	B_1	$\pi(1,0,0)\pi(-1,1,1)-\pi(-1,0,0)\pi(1,1,1)$	ρ_X
64	(0, 0, 1)	Е	$\pi(1,0,0)\pi(-1,0,1)-\pi(-1,0,0)\pi(1,0,1)$	ρ_x, ρ_y
64	(0, 1, 1)	A_1	$\pi(1,0,0)\pi(-1,1,1)+\pi(-1,0,0)\pi(1,1,1)$	$\rho_y + \rho_z$
64	(0, 1, 1)	B_1	$\pi(1,0,0)\pi(-1,1,1)-\pi(-1,0,0)\pi(1,1,1)$	ρ_{x}
$K\pi$				
L	Р	Irrep	$\mathcal{O}_{K\pi}$	\mathcal{O}_{K^*}
48	(1, 1, 0)	B_2	$\pi(1,0,0)K(0,1,0)$	$K_{x}^{*} - K_{v}^{*}$
64	(0, 0, 0)	T_1	$\pi(1,0,0)K(-1,0,0)$	Κ *μ΄
64	(0, 0, 1)	Е	$\pi(1,0,0)K(-1,0,1) - \pi(-1,0,0)K(1,0,1)$	K_x^* , K_y^*
64	(0, 1, 1)	A_1	$\pi(1,0,0)K(-1,1,1) + \pi(-1,0,0)K(1,1,1)$	$K_v^* + K_z^*$
64	(0, 1, 1)	B_1	$\pi(1,0,0)K(-1,1,1) - \pi(-1,0,0)K(1,1,1)$	K_x^*

• 2 criteria: expected to be close to resonance (by non-interacting energy) and not too many diagrams (cross terms).

Gordon Donald (Regensburg)

イロト 不得下 イヨト イヨト 二日

Things we calculate

Resonances in $K\pi$ and $\pi\pi$ scattering

E 14 July 2015 7 / 13

イロト イロト イヨト イヨト

590

• Energy levels extracted by diagonalising correlator matrix.

$$C_{ij} = \sum_{\alpha} rac{Z_{\alpha}^i Z_{\alpha}^{*j}}{2m_{lpha}} e^{-m_{lpha} t}.$$

- In cases we look at, expectation is to see 2 close-by states.
- When we have E_L , we use it to find k_{cm}^2 :

$$k_{cm}^2 = rac{(E_L^2 - (m_1^2 + m_2^2))^2 - 4m_1^2m_2^2}{4E_L^2}.$$

= nac

イロト イポト イヨト イヨト

- For P = 0, momenta is quantised as $2\pi/L$.
- Resonance parameterised by phase shift δ , where we compare measured k_{cm} to those allowed in finite box (with periodic boundary conditions).

$$Z_{lm}(q^2) = \sum_{\vec{z}} rac{\mathcal{Y}_{lm}(\vec{z})}{\vec{z}^2 - q^2}.$$

- q² is the centre of mass momentum equivalent to the 2-particle energy level and z
 z the allowed momentum vector.
- And then $\cot \delta$ = some straightforward-ish combination of $Z_{lm}(q^2)$ depending on P, irrep and meson masses.

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ つ

Preliminary results - $\pi\pi$

Gordon Donald (Regensburg)

Resonances in $K\pi$ and $\pi\pi$ scattering

14 July 2015 10 / 13

のへで 10 / 13

Preliminary results - $K\pi$

Gordon Donald (Regensburg)

Resonances in $K\pi$ and $\pi\pi$ scattering

14 July 2015 11 / 13

590

• We use a Breit-Wigner parameterisation.

$$\tan \delta = \frac{g^2}{6\pi} \frac{p_{cm}^3}{E_{cm}(m_R^2 - E_{cm}^2)}$$

- Can also use use a damping factor for p_{cm}^3 above resonance useful for $\pi\pi$.
- Find $m_R = 778(11)$, g = 4.46(44) for $\pi\pi$ and $m_R = 877(4)$, g = 5.65(72) for $K\pi$.
- PDG: $m_{\rho} = 775 \text{ MeV}$, $\Gamma_{\rho} = 148 \text{ MeV} \rightarrow g = 5.97$; $m_{K^*} = 892 \text{ MeV}$, $\Gamma_{K^*} = 51 \text{ MeV} \rightarrow g = 5.69$.

イロト 不得 トイヨト イヨト ヨー シタウ

- We are investigating hadronic resonances in simulations of $\pi\pi$ and $K\pi$ in which the pion mass is 150 MeV.
- So far, things looks promising.
- Currently continuing to gain statistics for both lattice volumes.
- Related project looking at *DK* scattering on the same lattice configurations.
- Interested in decays involving unstable hadrons, although it is not clear how or if this will manifest itself.