Nucleon generalized form factors from lattice QCD near the physical quark mass

Rudolf H. Rödl for RQCD

University of Regensburg - Institute for Theoretical Physics

July 15, 2015, Lattice 2015

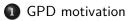
Universität Regensburg

Rudolf H. Rödl | University of Regensburg

Nucleon GPDs from LQCD

🕠 Outline

An outline


- GPD motivation
- 2 Lattice setup
- 3 Extracting GFFs
- 4 Excited state analysis

6 Conclusion and outlook

Outline

2 Lattice setup

3 Extracting GFFs

4 Excited state analysis

5 Results

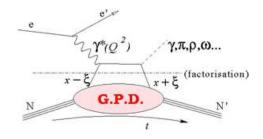
GPDs in a nutshell

Generalized Parton Distributions (GPDs)

- introduced late '90s
- comprehensive description of the hadron structure

Contain information about

- traditional form factors and parton distributions (limiting cases)
- quark total angular momentum


In particular important for

- spin structure of the proton
- deeply virtual Compton scattering (DVCS)

🗣 Nucleon GPDs

Kinematic definitions

- $\Delta = P' P$
- $\bar{P} = (P' + P)/2$
- $n \cdot n = 0$
- $n \cdot \bar{P} = 1$

Kinematic variables

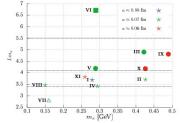
- x: longitudinal momentum fraction
- $\xi = -n \cdot \Delta/2$: longitudinal momentum transfer
- $Q^2 = -t = \Delta^2 = P' P$: momentum transfer

1 GPD motivation

2 Lattice setup

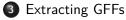
- 3 Extracting GFFs
- 4 Excited state analysis

5 Results



General setup

- $N_f = 2$ mass-degenerated NP improved Wilson-clover Fermions with Wilson Gauge action (RQCD, QCDSF)
- Apply Wuppertal smearing to suppress excited states
- Kinematic setup: $\vec{p_f} \cdot \vec{p_f} = 0$ and $\vec{p_i} \cdot \vec{p_i} \neq 0$


Todays setup

- Show results for ensemble VIII
- 150 MeV m_{π}
- $L \cdot m_{\pi} = 3.47$
- $t_f/a=$ 9, 12, 15 with $t_{15}\sim 1\,{
 m fm}$

2 Lattice setup

4 Excited state analysis

5 Results

Consider Vector GFF

$$\langle N(P') | \mathcal{O}_V^{\mu\nu} | N(P) \rangle = S(\mu,\nu) \bar{U}(P') \left[i\gamma^{\mu} \bar{P}^{\nu} A_{2,0}(t) + \frac{i\sigma^{\mu\alpha} \Delta^{\alpha} \bar{P}^{\nu}}{2m_N} B_{2,0}(t) + \frac{\Delta^{\mu} \Delta^{\nu}}{m_N} C_2(t) \right] U(P)$$

Remarks:

- Traces are already subtracted
- Euclidean signature (after Wick-Rotation)
- $\bullet\,$ Compute the (kinematic) prefactors of the GFFs They define the coefficient matrix M

Extract the GFF by solving an overdetermined system of equations:

$$\epsilon = \left[\mathbf{M} \cdot \begin{bmatrix} A_{20} \\ B_{20} \\ C_2 \end{bmatrix} - c_* \right]^T \cdot \operatorname{cov}^{-1}(c_*) \cdot \left[\mathbf{M} \cdot \begin{bmatrix} A_{20} \\ B_{20} \\ C_2 \end{bmatrix} - c_* \right]$$

Remarks:

- Find A_{20}, B_{20}, C_2 such that ϵ is minimized
- $\bullet\ c_*$ can be fitted from lattice data

Outline

2 Lattice setup

4 Excited state analysis

Excited state analysis

Imporant (first) step:

• Suppress excited states (Wuppertal smearing)

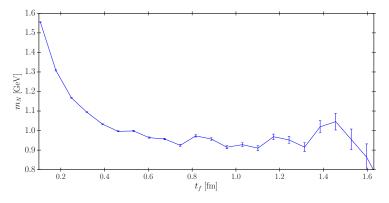


Figure : Effective mass plot of a nucleon (Ens. VIII).

Strategy of the analysis

- Perform excited state analysis for GFFs with simultaneous fits to 2-pt and 3-pt functions (extract $c_{\ast})$
- Carefully analyze introduced systematics (e.g. fit ranges)

This is challenging

- More noise due to derivative
- Even more noise if $Q^2 \neq 0$
- Fit ansatz more complicated if $Q^2 \neq 0$

Key ingredients

- $\bullet\,$ Improve 3-pt signal by averaging data of equal rows of M
- \bullet Simultaneous fit of all c_{\ast} (stabilizing noisy channels)

Nucleon 2-pt function with one exponent:

$$C_2^{1e}(p,t) = z_N(\vec{p}) \; \frac{E(\vec{p},m_N) + m_N}{E(\vec{p},m_N)} \; \mathrm{e}^{-E(\vec{p},m_N)t}$$

Nucleon 2-pt function with two exponents:

$$C_2^{2e}(p,t) = z_N(\vec{p}) \; \frac{E(\vec{p}, m_N) + m_N}{E(\vec{p}, m_N)} \; \mathrm{e}^{-E(\vec{p}, m_N)t} \\ + z_{N'}(\vec{p}) \; \frac{E' + m_{N'}}{E'} \; \mathrm{e}^{-E't}$$

Remarks

 \bullet Assume continuum dispersion relation for N but not for N^\prime

Nucleon 3pt function:

$$C_{3}(p,t) = \sqrt{z_{N}^{0} z_{N}^{pi} c} \mathcal{E}(t,m_{N}, E(\vec{p},m_{N})) + \sqrt{z_{N}^{0} z_{N'}^{pi}} x \mathcal{E}(t,m_{N}, E') + \sqrt{z_{N'}^{0} z_{N}^{pi}} x \mathcal{E}(t,m'_{N}, E(\vec{p},m_{N})) +$$

with

$$\mathcal{E}(t, M, E) = e^{-M(t_{\text{sink}} - t)} e^{-E(t - t_{\text{src}})}$$

Remarks

• Need to get c

Rudolf H. Rödl | University of Regensburg

How to control systematics?

Scan fit range dependency

- Fit range 2-pt 1 exp.: (9,25), (10,25), (11,25), (12,25), (13,25)
- Fit range 2-pt 2 exp.: (1,25), (2,25), (3,25), (4,25), (5,25)
- Fit range 3-pt: (2,14), (3,13), (4,12), (4,25), (5,25)

Do resampling

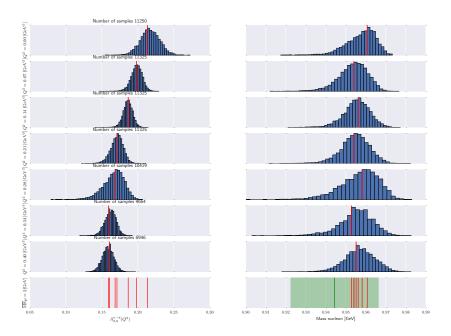
 $\bullet\,$ Create bootstrap ensemble (ss $=\,150)$ for each fit range combination

Remarks

- \bullet Solve the $5\cdot 5\cdot 3\cdot 151=11325$ overdetermined systems
- Create a histogram
- Weight the fits properly
- Mix statistical and systematic distributions

Outline

2 Lattice setup


3 Extracting GFFs

4 Excited state analysis

5 Results

 $A_{2,0}^{u-d}(Q^2)$ for Ens. VIII with $(t_f = 15)$

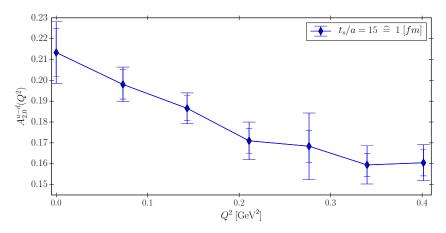


Figure : Inner error is statistical, outer error is total

Remarks:

- \bullet Linear behavior for small Q^2 as expected by LO $\chi\text{-}\mathsf{PT}$
- Finite volume effects of $\langle x \rangle_{u-d} = A^{u-d}_{2,0}(Q^2 = 0)$ are small (χ -PT result)

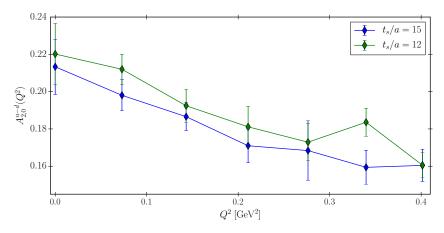


Figure : Comparison of two different sink locations.

Remarks:

•
$$A^{u-d}_{2,0}(Q^2=0) = \langle x \rangle_{u-d} \neq 0.155$$
 is no x-state effect

Ji's sumrule

$$J^{u-d} = \frac{A^{u-d}_{2,0}(Q^2 = 0) + B^{u-d}_{2,0}(Q^2 = 0)}{2}$$

Remarks

- $B^{u-d}_{2,0}(Q^2=0)$ not directly accessible.
- Calculate $(A_{2,0}^{u-d}(Q^2 \neq 0) + B_{2,0}^{u-d}(\neq 0))/2.$
- Perform linear fit and draw histogram (preliminary)

🕕 Total angular momentum

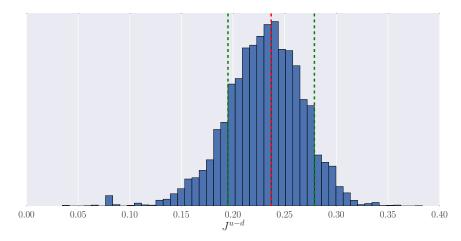


Figure : $J^{u-d} = 0.237 \pm 0.042$ for Ens. VIII with $(t_s/a = 15)$.

Outline

2 Lattice setup

- 3 Extracting GFFs
- 4 Excited state analysis

6 Conclusion and outlook

Conclusion

We have demonstrated our excited states analysis for some GFFs on our lightest ensemble. At least in this case excited states are under control at a source sink separation of 1 [fm].

To do

- Apply analysis to all ensembles.
- Apply different weights to the histograms.
- Perform combined χ -PT fits to all ensembles simultaneously.