Rho-meson resonance parameters from Lattice QCD

Dehua Guo, Andrei Alexandru

The George Washington University

The 33rd International Symposium on Lattice Field Theory

July 14, 2015

イロト イヨト イヨト イヨト

Symmetries of the elongated box

2 Technical details

3 Results

イロト イヨト イヨト イヨト

Symmetries of the elongated box

 ρ resonance is in $I = 1, J^{\rho} = 1^{-}$ channel for pion-pion scattering. Elongated box method tunes the momentum of the scattering particles on the lattice.

The SO(3) symmetry group reduce to discrete subgroup O_h or D_{4h}

J	O _h	D _{4h}
0	A_1^+	A_1^+
1	F_1^-	$A_2^-\oplus E^-$
2	$E^+ \oplus F_2^+$	$A_1^+\oplus B_1^{\overline{+}}\oplus B_2^+\oplus E^+$
3	$A_2^-\oplus F_1^-\oplus F_2^-$	$A_2^-\oplus B_1^-\oplus B_2^-\oplus 2E^-$
4	$A_1^+ \oplus E^+ \oplus F_1^+ \oplus F_2^+$	$2A_1^+ \oplus A_2^+ \oplus B_1^+ \oplus B_2^+ \oplus 2E^+$

For the p-wave (l = 1) scattering channel, we only need to construct the interpolating fields in F_1^- in the O_h group, A_2^- representations in D_{4h} group because the energy contribution from angular momenta $l \ge 3$ is negligible.

Lüscher's formula for elongated box [1]

Phase shift for l = 1, rest frame ($\mathbf{P} = 0$):

$$A_{2}^{-}: \cot \delta_{1}(k) = \mathcal{W}_{00} + \frac{2}{\sqrt{5}} \mathcal{W}_{20}$$
(1)

$$\mathcal{W}_{lm}(1,q^2,\eta) = \frac{\mathcal{Z}_{lm}(1,q^2,\eta)}{\eta\pi^{\frac{3}{2}}q^{l+1}}; \quad q = \frac{kL}{2\pi}; \ \eta = \frac{N_{el}}{N}: \text{elongation factor}$$
(3)

Zeta function

$$\mathcal{Z}_{lm}(s;q^2,\eta) = \sum_{\tilde{\mathbf{n}}} \mathcal{Y}_{lm}(\tilde{\mathbf{n}})(\mathbf{n}^2 - q^2)^{-s}; \ \mathbf{n} \in \mathbf{m}$$
(4)

Total energy

$$E = 2\sqrt{m^2 + k^2}; \quad k = \sqrt{\left(\frac{E}{2}\right)^2 - m^2}$$
(5)

[1] X. Feng, X. Li, and C. Liu, Phys.Rev. D70 (2004) 014505

Lüscher's formula for boost frame

In order to obtain new kinematic region, we boost the resonance along the elongated direction.

$$\mathbf{P} \rightarrow$$

$$A_2^-: \cot \delta_1(k) = \mathcal{W}_{00} + \frac{2}{\sqrt{5}} \mathcal{W}_{20}$$
 (6)

イロト イヨト イヨト イヨ

(7)

$$\mathcal{W}_{lm}(1,q^2,\eta) = \frac{\mathcal{Z}_{lm}^{\mathsf{P}}(1,q^2,\eta)}{\gamma\eta\pi^{\frac{3}{2}}q^{l+1}}; \quad \eta = \frac{N_{el}}{N} : \text{elongation factor}; \quad \gamma : \text{boost factor}; \quad (8)$$

$$\mathcal{Z}_{lm}^{\hat{\mathbf{P}}}(s;q^2,\eta) = \sum_{\mathbf{n}} \mathcal{Y}_{lm}(\tilde{\mathbf{n}})(\tilde{\mathbf{n}}^2 - q^2)^{-s}; \mathbf{n} \in \frac{1}{\gamma}(\mathbf{m} + \frac{\dot{\mathbf{P}}}{2});$$
(9)

Technical details

Interpolating field construction for ρ resonance

Four $q\bar{q}$ operators and two scattering operators $\pi\pi$ in A_2^- sector.

$$\rho^{J}(t_{f}) = \bar{u}(t_{f})\Gamma_{t_{f}}A_{t_{f}}(\mathbf{p})d(t_{f}); \quad \rho^{J^{\dagger}}(t_{i}) = \bar{d}(t_{i})\Gamma^{\dagger}_{t_{i}}A^{\dagger}_{t_{i}}(\mathbf{p})u(t_{i})$$
(10)

$$\frac{\overline{N} \quad \Gamma_{t_{f}} \quad A_{t_{f}} \quad \Gamma_{t_{i}} \quad A_{t_{i}}^{\dagger} \quad \Gamma_{t_{i}}^{\dagger} \quad A_{t_{i}}^{\dagger}}{1 \quad \gamma_{i} \quad e^{i\mathbf{p}} \quad -\gamma_{i} \quad e^{-i\mathbf{p}}} \\
\frac{2 \quad \gamma_{4}\gamma_{i} \quad e^{i\mathbf{p}} \quad \gamma_{i} \quad \nabla_{j}e^{i\mathbf{p}}\nabla_{j} \quad \gamma_{i} \quad \nabla_{j}^{\dagger}e^{-i\mathbf{p}}\nabla_{j}^{\dagger}}{4 \quad \frac{1}{2} \quad \{e^{i\mathbf{p}}, \nabla_{i}\} \quad -\frac{1}{2} \quad \{e^{-i\mathbf{p}}, \nabla_{i}\}} \\
(\pi\pi)_{\mathbf{P},\Lambda,\mu} = \sum_{\mathbf{p}_{1}^{*},\mathbf{p}_{2}^{*}} C(\mathbf{P},\Lambda,\mu;\mathbf{p}_{1};\mathbf{p}_{2})\pi(\mathbf{p}_{1})\pi(\mathbf{p}_{2}), \qquad (11)$$

$$\pi\pi_{100}(\mathbf{p}_{1},\mathbf{p}_{2},t) = \frac{1}{\sqrt{2}} [\pi^{+}(\mathbf{p}_{1})\pi^{-}(\mathbf{p}_{2}) - \pi^{+}(\mathbf{p}_{2})\pi^{-}(\mathbf{p}_{1})]; \quad \mathbf{p}_{1} = (1,0,0) \quad \mathbf{p}_{2} = (-1,0,0)$$

$$\pi\pi_{110} = \frac{1}{2} (\pi\pi(110) + \pi\pi(101) + \pi\pi(1-10) + \pi\pi(10-1)) = \pi\pi(10-1)) = \pi\pi(10-1) = \pi\pi(10-1)$$

Technical details

6×6 correlation matrix

$$C = \begin{pmatrix} C_{\rho^{J} \leftarrow \rho^{J'}} & C_{\rho^{J} \leftarrow \pi\pi_{100}} & C_{\rho^{J} \leftarrow \pi\pi_{110}} \\ C_{\pi\pi_{100} \leftarrow \rho^{J'}} & C_{\pi\pi_{100} \leftarrow \pi\pi_{100}} & C_{\pi\pi_{100} \leftarrow \pi\pi_{110}} \\ C_{\pi\pi_{110} \leftarrow \pi\pi_{110}} & C_{\pi\pi_{110} \leftarrow \pi\pi_{110}} \end{pmatrix}.$$
(12)
The correlation functions: $\overline{u}(t_i) \longrightarrow u(t_f)$

$$C_{\rho_i \leftarrow \rho_j} = - \begin{pmatrix} I_{f_f}, (\mathbf{p}, t_f) \\ C_{\rho_i \leftarrow \pi\pi} = \begin{pmatrix} I_{f_i} & I_{f_$$

Dehua Guo, Andrei Alexandru (GWU)

Rho-meson resonance parameters from Lattice QCD

July 14, 2015 7 / 22

Laplacian Heaviside smearing [3]

To estimate all-to-all propagators:

$$\tilde{\Delta}^{ab}(x,y;U) = \sum_{k=1}^{3} \left\{ \tilde{U}_{k}^{ab}(x)\delta(y,x+\hat{k}) + \tilde{U}_{k}^{ba}(y)^{*}\delta(y,x-\hat{k}) - 2\delta(x,y)\delta^{ab} \right\}.$$
 (17)

$$S_{\Lambda}(t) = \sum_{\lambda(t)}^{\Lambda} |\lambda(t)\rangle \langle \lambda(t)|; \quad \tilde{u}(t) = S(t)u(t) = \sum_{\lambda_t} |\lambda_t\rangle \langle \lambda_t| u(t).$$
(18)

Dehua Guo, Andrei Alexandru (GWU)

ρ energy spectrum

We implement the calculation in 3 ensembles ($\eta = 1.0, 1.25, 2.0$) at $m_{\pi} \approx 310 \text{ MeV}$ and 3 ensembles ($\eta = 1.0, 1.17, 1.33$) at $m_{\pi} \approx 227 \text{ MeV}$ with nHYP-smeared clover fermions and two mass-degenerated quark flavor.

Figure : The lowest three energy states with their error bars for $\eta = 1.0, m_{\pi} = 310 \text{ MeV}$ ensemble

We extract energy *E* by using double exponential $f(t) = we^{-Et} + (1 - w)e^{-E't}$ to do the χ^2 fitting for each eigenvalues.

Energy spectrum

Dehua Guo, Andrei Alexandru (GWU)

Rho-meson resonance parameters from Lattice QCD

July 14, 2015 10 / 22

(19)

Expectation for energy states

Figure : The lowest 3 energy states prediction from unitary χ PT. When $\eta = 2.0$ the 3rd state is from operator $\pi \pi_{200}$ instead of $\pi \pi_{110}$

Image: A math a math

Phase shifts and resonance parameters

Figure : Phaseshift data from three ensembles fitted with Breit Wigner form (left) and only fit 5 data points in the resonance region .

$$\cot(\delta_1(E)) = \frac{M_R^2 - E^2}{E\Gamma_r(E)}$$
 where $\Gamma_r(E) \equiv \frac{g_{R12}^2}{6\pi} \frac{p^3}{E^2}$. (20)

$$\delta_1(E) = \arccos \frac{6\pi (M_R^2 - E^2)E}{g^2 p^3}$$
(21)

Centrifugal barrier term [4]

Based on the idea that resonance has finite spatial size, Γ_r is expected to damped faster than Breit Wigner form above the resonance region. Modify BW with a centrifugal barrier term.

$$\Gamma_r(E) = \frac{g^2}{6\pi} \frac{p^3}{E^2} \frac{1 + (p_R R)^2}{1 + (pR)^2}.$$
(22)

Figure : (left)Current study with LapH smearing vs (right) fitting only the resonance region

[4] F. Von Hippel and C. Quigg, Phys.Rev. D5 (1972) 624-638.

Boost frame data

We add the boost data for the elongated box and fit the phase shift using the modified BW form.

Figure : Left: $m_p i \approx 310 \text{ MeV}$. Right: $m_\pi \approx 220 \text{ MeV}$

Image: A math a math

$m_{ ho}$ and $g_{ ho\pi\pi}$ comparison

Dehua Guo, Andrei Alexandru (GWU)

Rho-meson resonance parameters from Lattice QCD

July 14, 2015 15 / 22

- We complete a precision study of ρ resonance with LapH smearing method and obtain the resonance parameters at $m_{\pi} \approx 310 \text{ MeV}$ and $m_{\pi} \approx 227 \text{ MeV}$.
- For precise energy results, Breit Wigner form is not sufficient to fit for the entire region. It needs modification for the BW form.
- The extrapolation of m_{ρ} to physical pion mass is smaller than $m_{\rho}^{\text{phy}} = 775 \text{ MeV}$, we believe that this comes from the absence of strange quark and the $K\bar{K}$ channel which is supported by another unitary χ PT study.

イロト イポト イヨト イヨト

Conclusions

- X. Feng, X. Li, and C. Liu, Two particle states in an asymmetric box and the elastic scattering phases, Phys. Rev. D70 (2004) 014505, [hep-lat/0404001].
 - M. Luscher and U. Wolff, How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation, Nucl.Phys. B339 (1990) 222–252.
- C. Morningstar, J. Bulava, J. Foley, K. J. Juge, D. Lenkner, et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD, Phys.Rev. D83 (2011) 114505, [arXiv:1104.3870].
- F. Von Hippel and C. Quigg, *Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes, Phys.Rev.* D5 (1972) 624–638.
 - P. Estabrooks and A. D. Martin, *pi pi Phase Shift Analysis Below the K anti-K Threshold*, *Nucl.Phys.* **B79** (1974) 301.

(日) (同) (三) (三)

Appendix-A:Symmetry on the lattice

The eigenstates $|n\rangle$ are computed in a given irrep of the lattice symmetry group.

$$\psi_n(R^{-1}x) = \psi_n(R^{-1}(x+\mathbf{n}L)); \qquad \left\langle \hat{O}_2(t)\hat{O}_1^{\dagger}(0) \right\rangle = \sum_n \left\langle 0|\hat{O}_2|n \right\rangle \left\langle n|\hat{O}_1|0 \right\rangle e^{-tE_n}$$
(23)

Symmetries: Isospin, flavor, translation, rotation, inversion, etc.

	<i>SO</i> (3)	cubic box (O_h)	elongated box (D_{4h})
irep label	$Y_{lm}; l=0,1\infty$	A_1,A_2,E,F_1,F_2	A_1, A_2, E, B_1, B_2
dim	$1,3,,2l+1,\infty$	1, 1, 2, 3, 3	1, 1, 2, 2, 2

Table : Irreducible representation in SO(3), O and D_4

Table : Angular momentum mixing among the irreducible representations of the lattice group

O _h		D _{4h}	
irreducible representation	1	irreducible representation	1
A1	0,4,6,	A1	0,2,3,
A_2	3,6,	A2	1,3,4,
F_1	1,3,4,5,6,	B ₁	2,3,4,
F_2	2,3,4,5,6,	B ₂	2,3,4,
Ē	2,4,5,6,	Ē	1,2,3,4,

Appendix-A:Symmetry on the lattice

The SO(3) symmetry group reduce to discrete subgroup O_h or D_{4h}

Table : Resolution of 2J + 1 spherical harmonics into the irreducible representations of O_h and D_{4h}

J	O_h	D_{4h}
0	A_1^+	A_1^+
1	F_1^-	$A_2^-\oplus E^-$
2	$E^+ \oplus F_2^+$	$A_1^+\oplus B_1^+\oplus B_2^+\oplus E^+$
3	$A_2^-\oplus F_1^-\oplus F_2^-$	$A_2^-\oplus B_1^-\oplus B_2^-\oplus 2E^-$
4	$A_1^+ \oplus E^+ \oplus F_1^+ \oplus F_2^+$	$2A_1^+\oplus A_2^+\oplus B_1^+\oplus B_2^+\oplus 2E^+$

Assume that the energy contribution from angular momenta $l \ge 3$ is negligible. For example, if we study the p-wave(l = 1) scattering channel, we should construct the interpolating field in F_1^- in the O_h group, A_2^- and E^- representations in D_{4h} group.

イロト イポト イヨト イヨト

Conclusions

Variational method [2]

Variational method is used to extract energy of the excited states. Construct correlation matrix in the interpolator basis

$$C(t)_{ij} = \langle \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \rangle; i, j = 1, 2, ...,$$
 number of operators (24)

The eigenvalues of the correlation matrix are

$$\lambda^{(n)}(t,t_0) \propto e^{-\mathcal{E}_n t} (1 + \mathcal{O}(e^{-\Delta \mathcal{E}_n t})), n = 1, 2, ..., \text{number of operators}$$
(25)

where $\Delta E_n = E_{\text{Number of operators } + 1} - E_n$.

Larger energy gap makes the high lying energy decay faster and effective mass plateau appear in an earlier time slice.

July 14, 2015 19 / 22

イロト イポト イヨト イヨト

Conclusions

Appendix-B: LapH smearing

Benefit from LapH smearing:

- Keep low frequency mode up to Λ cutoff to compute the all to all propagators, u(x) \downarrow u(y). The number of propagators $M^{-1}(t_f, t_i)$ need to be computed reduce from 6.34×10^{13} in position space to 3.7×10^8 in momentum space for the 24^348 ensemble.
- The effective mass reach a plateau in an earlier time slice.

Figure : pion effective mass with (red) and without LapH smearing (blue)

A B > A B >

Appendix-C: Fitting phase-shift

$$\chi^2 = \Delta^T COV^{-1} \Delta \tag{26}$$

where

$$\Delta_i = \sqrt{s_i^{\text{curve}}} - \sqrt{s_i^{\text{data}}}$$
(27)

イロト イヨト イヨト イヨ

Conclusions

Appendix-D: Experiment data [5]

Figure : $\pi\pi$ phase shift below $K\bar{K}$ threshold in experiment [5] Estabrooks, P. and Martin, Alan D. Nucl.Phys. B79 (1974) 301

< ロ > < 同 > < 三 > < 三