Scalar and vector form factors of $D \rightarrow \pi \ell \nu$ and $D \rightarrow K \ell \nu$ decays with $N_f = 2 + 1 + 1$ Twisted fermions

I N F N

lstituto Nazionale di Fisica Nucleare

N. Carrasco, P. Lami, V. Lubicz, L. Riggio, S. Simula

> Paolo Lami Università degli Studi Roma Tre INFN Sezione Roma Tre

Lattice 2015, July 15th 2015, Kobe, Japan

Overview

- Simulation details
- General strategy
- Results
- Calculation of CKM matrix elements V_{cd} and V_{cs}

Simulation details

- Twisted mass sea fermions at maximal twist
- Osterwalder-Seiler valence fermions
- Iwasaki gluonic action
- Twisted boundary conditions to simulate momenta

Results

Simulation details

ensemble	β	V/a^4	$a\mu_{sea}=a\mu_\ell$	$a\mu_{\sigma}$	$\pmb{a}\mu_{\delta}$	N _{cfg}	$a\mu_s$	$a\mu_c$
A30.32	1.90	$32^3 imes 64$	0.0030	0.15	0.19	150	0.0180,	0.21256, 0.25000,
A40.32			0.0040			90	0.0220,	0.29404, 0.34583
A50.32			0.0050			150	0.0260	
A40.24	1.90	$24^3 imes 48$	0.0040	0.15	0.19	150		
A60.24			0.0060			150		
A80.24			0.0080			150		
A100.24			0.0100			150		
B25.32	1.95	$32^3 imes 64$	0.0025	0.135	0.170	150	0.0155,	0.18705, 0.22000,
B35.32			0.0035			150	0.0190,	0.25875, 0.30433
B55.32			0.0055			150	0.0225	
B75.32			0.0075			75		
B85.24	1.95	$24^3 imes 48$	0.0085	0.135	0.170	150		
D15.48	2.10	$48^3 imes 96$	0.0015	0.12	0.1385	60	0.0123,	0.14454, 0.17000,
D20.48			0.0020			90	0.0150,	0.19995, 0.23517
D30.48			0.0030			90	0.0177	

Pion masses as low as 210 MeV

ensemble	β	$L(\mathrm{fm})$	$M_{\pi}(\text{MeV})$	$M_{\pi}L$
A30.32	1.90	2.84	245	3.53
A40.32			282	4.06
A50.32			314	4.53
A40.24	1.90	2.13	282	3.05
A60.24			344	3.71
A80.24			396	4.27
A100.24			443	4.78
B25.32	1.95	2.61	239	3.16
B35.32			281	3.72
B55.32			350	4.64
B75.32			408	5.41
B85.24	1.95	1.96	435	4.32
D15.48	2.10	2.97	211	3.19
D20.48			243	3.66
D30.48			296	4.46

Lattice spacing as low as 0.0619 fm

 $a|_{\beta=1.90,\ 1.95,\ 2.10}=\{0.0885(36),\ 0.0815(30),\ 0.0619(18)\}{\rm fm}$.

Several values of momenta for both mesons involved in the decay, ranging from 0 to 650 MeV Several values of 4-momentum transfer

General Strategy

- Extract $\langle \pi | V_{\mu} | D \rangle$ and $\langle K | V_{\mu} | D \rangle$ from the corresponding smeared three-point correlation functions in order to calculate $f_0(q^2)$ and $f_+(q^2)$, where $q_{\mu} = (E_D E_{\pi}, \vec{q})$
- Data selection
- Simultaneous fit of the form factors dependences on the light quark mass, lattice spacing and 4-momentum transfer
- extrapolation to the physical point

4-momentum transfer dependence

Lorentz invariance breaking effect

Can be induced by any hypercubic invariant discretization effect that breaks Lorentz invariance, like

Example of data selection

 $\beta = 1.90 \text{ L} = 24 \mu = 0.0060$

Global fit

Fit ansatz (for both the decays studied)

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{(1 - q^{2}/M_{V}^{2})}(1 + Aq^{2})(1 + Bm_{l} + Ca^{2})$$

$$f_0(q^2) = \frac{f_+(0)}{(1 - q^2/M_S^2)} (1 + Bq^2)(1 + Bm_l + Ca^2)$$

$$M_V = M_{PS} + \Delta_{PS,V}$$
$$M_S = M_{PS} + \Delta_{PS,S}$$

 M_{PS} is calculated on the lattice $\Delta_{PS,V}$ and $\Delta_{PS,S}$ are taken from the PDG

Conclusion

Global fit result for $D \to \pi$

 $f_+(0) = 0.610(23)$

The uncertainty is only statistical!

Conclusion

Global fit result for $D \to K$

 $f_+(0) = 0.747(22)$

The uncertainty is only statistical!

$$\begin{array}{c|ccccc} \text{Results} & \text{Results} & \text{Conclusion} \\ \hline D \rightarrow \pi & D \rightarrow K \\ \hline From the experimental value of \\ f_{+}(0)|V_{cd}| & f_{+}(0)|V_{cs}| \\ \hline We obtain \\ \hline |V_{cd}| = 0.2336(93) & |V_{cs}| = 0.975(29) \\ \hline |V_{cd}|^{2} + |V_{cs}|^{2} + 1 \\ \hline & \downarrow^{2} = 1.004(31) \\ \hline \end{array}$$
We previously found the CKM matrix elements from the decay constants* and obtained $|V_{cd}| = 0.2221(67) & |V_{cs}| = 1.014(27) \\ \hline & |V_{cd}|^{2} + |V_{cs}|^{2} + 1 \\ \hline & \downarrow^{2} = 1.08(5) \\ \hline \end{array}$

*N. Carrasco et al Phys. Rev. D 91, 054507 (2015)

Comparison with other results

	$f_+(0)^{D \to \pi}$	V _{cd}	$f_+(0)^{D \to K}$	V _{cs}
This work	0.610(23)	$0.2336(88)_{latt}(31)_{exp}$	0.747(22)	$0.975(29)_{latt}(7)_{exp}$
ETMC 2015 decay constants*		0.2221(67)		1.014(27)
FLAG $N_f = 2 + 1$	0.666(29)	0.2192(95) _{latt} (45) _{exp}	0.747(19)	0.9746(248) _{latt} (67) _{exp}

*N. Carrasco et al Phys. Rev. D 91, 054507 (2015)

Still much to do...

- Further investigation of the Lorentz invariance breaking effect
- Inclusion of three point scalar correlation functions to obtain f_0 with better precision
- Estimate of systematic effects, i.e. further studies of the chiral and continuum extrapolations as well as q^2 dependence of the form factors (e.g. hard-pion ChPT and z-expansion)

Thank you for the attention!