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Gross-Witten matrix model is defined as follows:

Model describes one-plaquette world in 2 dimension.

There is a 3rd order phase transition in 
the limit of infinitely large N:
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The 1/N expansion was extensively
studied. 

Model has rich physical content
and it is exactly solvable:

It was argued that phase transition is 
caused by condesation of instantons. 
(Neuberger, Nucl.Phys. B 179 253-282)

There are weak and strong couping 
regimes separated by transition point
              . 
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Instantons in the Gross-Witten model

0

Effective potential

In the weak coupling phase there are 2 saddle points: one stable and one unstable. 
Instanton can be associated with tunneling between them:

stable unstable

In contrast, in the strong coupling 
regime eigenvalues cover entire circle, 
so there is only one saddle point and 
no instantons:

Gross, Witten, Phys.Rev.D 21 446

One can reduce partition function of the Gross-Witten model to the integral
over phases of matrix eigenvalues          : 

Instanton 
action



  

However, let us consider a double scaling limit in this model which is defined as:

fixed,

then asymptotic behavior of free energy will be given by a solution of the string 
equation:

(Painleve II)

Solutions have a formal trans-series form:

It is possible to fix the shape of the function A(k) from both sides of the phase 
transition:

Precisely 
instanton action 
from prev. slide!

?

Marino, JHEP, 
0812:114, 2008
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Poles on the Borel plane

In fact, the 1/N expansion of the Gross-Witten model is factorially divergent:

and its Borel transformation produces many poles along the real axis:

Ambiguities of imaginary part caused by these poles are related to the 
instanton action.

This relation can be explicitly shown in the weak coupling regime, but in the 
strong couling regime it remains unclear what instantons are?

We would like to answer this question.

This phenomenon is known as resurgence phenomenon and it was actively 
studied previously in many quantum mechanical problems, CP^N model and 
other models (G. Dunne, M. Unsal, ...)



  

It is natural to study contribution of instantons using Morse theory. By virtue of 
this theory, partition functions can be expressed as a sum over all saddle points 
of complexified action S(z):

where         is the steepest descent contour (Lefcshetz thimble) in the complex 
plane originating from a given saddle point: 

Downward/Upward flow is defined in such a way that real part ReS(z) is 
decreasing/increasing along the flow and imaginary is constant.

Lefcshetz thimbles

and         is a number of intersections of upward flow        with the real axis:

 Witten, arXiv:1001.2933



  

Therefore, our program is:

1. Find and study all saddle points in the complex plane.

2. Inspect eigenvalues of Hessian matrix                                        at 
these points.

3. Try to count intersection numbers       .



  

Critical point equation:

Let's solve it numerically!

Simple Newton iterations:

with random choice of initial vector z0 on the complex plane.

(In order to improve convergence of iterations, we actually use second order Halley 
iterations, which are an improvement of Newton iterations)

It might be quiet tricky to solve this equation analytically in the complex 
domain without some input guess.
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m eigenvalues 

N-m eignv.

What have we found? Making degrees of freedom complex, we promote unit 
circle to a cylinder and allow eigenvalues to move along 
it. Transversal direction of the cylinder represents 
imaginary part of eigenvalues.

Situation changes dramatically: in both 
phases there are N saddle points and 
therefore many instantons.
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m<m*

0

π

m>m*

In the strong coupling regime we have 2 distinct 
types of saddle points:

There is some “critical” number of complex eigenvalues m* which distinguishes 
between two different types of saddle points.



  

Weight of saddle points is always real:

Blue dots → weight is +exp(ReS(z)) Red dots → weight is -exp(ReS(z))

m

Dilute instanton gas in the weak coupling regime. We observe 
indications for condensation of instantons at the transition point.

N=100



  

In the strong coupling regime configuration with maximal weight has 
“instanton” number m = m* > 1

m*=20

N=100



  

Next, we would like to address the question of instanton action.

Then we compare our one-instanton action to analytical result obtained 
from purely algebraic consideration without any knowledge about what 
instantons are in the strong coupling regime:

Assuming that complex saddle points contribute to the path integral 
(intersection numbers                            ), we can calculate instanton 
action as

Blue dots – numerical data, Solid line – Marino, JHEP, 0812:114, 2008

Based on this result, we suggest that we have found missing ingredient in 
previous studies of this model in the context of resurgence – complex instantons.
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Finally, we have studied eigenvalues of Hessian matrix at saddle points:

1. Real-valued configuration with m=0 delivers global 
maximum on the unit circle, no zero modes:

2. Configuration with one tunneled eigenvalue has 1 
unstable direction associated with instanton:

3. All complex saddle points are non-degenerate:

0

In the weak coupling regime                we have found what we expected:

But in the strong coupling regime               we came across to something 
very interesting:

0

π

m<m
*

All saddles of this type
(including ground sate)

have precisely one zero eigenvalue of 
Hessian matrix in the limit of large N



  

We'd like to address the issue of zero mode in more details.

To do so, we have studied lowest eigenvalue           of Hessian matrix of 
suspicious configurations and found that it decays exponentially with N in the 
strongly coupled phase:

N

Lowest eigenvalue in a Log-scale versus N at     

To deal properly with this eigenvalue in the limit of large N, one can pick it from 
determinant and include to the action of corresponding saddle:

Lowest eigenvalue versus    at N=400

weak

strong



  

The origin of this zero mode is clear: in the limit of large    we can neglect 
external potential and eigenvalues tend to arrange themselves equidistantly 
along the unit circle:

Therefore, there is a global U(1) rotational symmetry which can be broken 
spontaneously.
Corresponding zero mode is nothing else but infinitesimally small 
displacements of eigenvalues from their original positions which do not 
change the action: just like a sound wave in a crystalline.

Surprisingly that this zero mode survives even at finite      then rotational 
U(1) symmetry is broken explicitly by the potential.

Small displacements of eigenvalues



  

Conclusions

1) We have found many saddle points in the complex plane and studied 
their structure.

2) We managed to reproduce known instanton action in both phases. This 
observation allows us to identify complex saddle points which most likely 
govern divergences in the 1/N expansion (this was not known).

3) Structure of saddles reveals picture of dilute instanton gas in the weak 
coupling regime and condensation (“melting”) of instantons at the 
transition point. In the strong coupling all instantons simply move to the 
complex plane. 

4) In the strong coupling regime we observe emergence of zero modes, 
which potentially can have some impact on the 1/N expansion.



  

Outlook

1) All complex saddle points presumably can be found analytically as 
multi-cut solutions.

2) Knowing all saddle points and Lefcshetz thimbles it is possible to 
construct uniform approximation, which will connect the strong coupling 
and the weak coupling phases.

From this point of view, it is very important to study structure of these 
thimbles. However, there are many complications coming from branch 
cuts of Log-term in the action, which greatly influence on thimbles:

It seems that simple Morse theory does not give a proper answer.
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