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Motivation

@ Persistent challenges for lattice QCD, e.g., sign problem for real chemical
potential, critical slowing down, volume scaling...

— worthwhile to explore alternative discretizations of Yang-Mills theory
@ |dea: induce gauge dynamics by auxiliary fields coupled linearly to the gauge
field
— analytical methods / simulation algorithms used in strong-coupling
approaches become applicable

@ Most earlier approaches require infinite number of infinitely heavy auxiliary
fields (or do not have the desired YM continuum limit)

@ Approach of Budczies and Zirnbauer [arXiv:math-ph/0305058, 2003]:
induced U(N¢) pure YM theory with Np > N auxiliary fields

@ In the following: slightly modified version of BZ approach (curing a trivial sign
problem) adapted to SU(N,)
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Induced action

Outline

Q Induced lattice gauge action
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Induced action

Plaguette weight function

@ Instead of familiar Wilson weight factor ww (Up) = exp[ Tr(Up + UT )] for

plaquette variables Up = Uy (x )Uv(x+u)UL(x +VUT(x) € SU(NC)
consider pure gauge plaquette weight factor

w(Up)= det*”b( E(Up+U)) 0<a<l Np>0
Z:J[dUu]l_[w(Up) p=(GH<V)
P

@ For integer Np, inverse determinants can be written as integrals over
Np complex auxiliary boson fields (in the fundamental representation)

withm>2, Z=m*—4m? 1 2

[ Tewp) = j [dgp] e=Sb10.9.U]
p

SlB, ¢, U] = ZZZ[m«pbp )b6,0 (<) = Bb,p (X UL, 1, X0 )b, 0 (6

=1 P j=1

_(z_)b,p(xj) ( ’ j+1)¢bp( jp+1)}
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Induced action

Limits
@ Trivial limit Np — o0, a — 0 with Npa fixed

—Np a t aNp t
S(Up) =—log det (1— = WUp +Up)) =NpTrlog(...) —»—TTr(up +Up)

@ Limit o — 1 at fixed N a la Budczies and Zirnbauer: existence and nature of the
continuum limit depend on N and N, (details for SU(N,) later)

@ Limit Np — oo at fixed a allows for systematic saddle-point analysis
(perturbation theory)

PT bound

N.—3% N, o0
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9 Continuum limit
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Continuum limit

Character expansion

o At fixed Np, determine if w(U) = det™> (1— $(U+U")) - §(U) as a — 1

@ Peter-Weyl theorem: é-function on group manifold as linear combination of
characters x, of all irreducible representations A (with dim. dy)

W > daa(U)

all irreps A

@ Expand weight in irreducible characters

w(U) =Y ax(@)xa (V) ax(a) = f dUw(U)xA(U™)
A

@ Properly normalized weight function (A = 0 corresponds to the trivial rep. U=1)

Z= J dUw(U) = co(a)
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Continuum limit

Expansion for small 1 — o

2
To compute limy_1 €)/Co, parametrize U = 'V =" with H € su(N,)

2
Ne—1
2

au = \/detg(H)(é(l—a)) dH

B 1 &) (_1)!( 2 k -
g(H) = 5 +§1 k1 2) (a(l—a)) H2%;

and expand the integrand in 1 — o

det=No (1 w UT)) det™ (1 +H?) Ny M
e - — =~ F—t...
2 U (1— a)VoNe e 1A

SU(Nc)
I3 C
X (e—’ a”“””) =d» (1— 2/\127(1)(1—@)%#/2 +.. )
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Continuum limit

Interchange limit and integral

@ As long as fsu(NC)deet_Nb(l + H?) exists, interchanging lima—1 and [ dH gives

lim ZZEZ; S R WAL

@ In the eigenvalue parametrization

0 Nc Ne Ne
J dHdet™> (1 4+ H?) o f l_[de(S(ZZj) (l_[(Zj—Zk )l_[(l +2Z )
su(Nc)

01 j=1 j<k

we see that the integral exists for Np > N, — %

@ Np>N.— % is a sufficient but not necessary condition for the existence of the
continuum limit

@ Alternative, more direct approach (using the eigenvalue parametrization of U)
shows that the continuum limit exists if and only if Np > Nc — 2
(same method for U(Nc) leads to Nj, > Nc — 5 as condition for continuum limit)
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Continuum limit

Check for N =2, 3

@ For SU(2): explicit calculation of coefficients in character expansion confirms
bound

@ For SU(3): numerically compute N% (TrU) with single plaquette weight
forNp=1,1.5,1.7, Np =1.75, N, = 1.8,2,3,4
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Continuum limit

Nature of continuum limit

@ To determine the nature of the continuum limit, expand the coefficients c)/co to
linear orderin 1— o
Interchange again expansion in (1 — o) and de, as long as integrals are finite

Jsuney dH det™ (14 H?) TrH? exists if Np > N — 2

@ We get Np > N — % as sufficient but not necessary condition for

cx(a)
co(a)

SN [auwe dHdet™ 0 (14 H2) TrH? )

dA(1—(1—a) —
N2 — 1 fsu(NC) dHdet™>(1+H?)

@ In this case, w(VU) reduces to the heat-kernel weight factor for small 1 — o

ax(a) _ dAe—fcgu(NC)W
co(a)

analogous to Wilson’s weight factor for small g2

@ Continuum limit in two dimensions is in the universality class of SU(NC)
Yang-Mills theory for Np > NC— = (condition for U(NC) Np > Nc+ 5 )
(Continuum limit in 2d is trivial Wlth Migdal’s recursion: heat- kernel weight is
invariant under subdivision of lattice cells due to character orthogonality)

@ Conjecture for 3d and 4d: equivalence with YM persists (collective nature of
fields gets enhanced (compared to 2d); works in favor of universality)

Robert Lohmayer Induced YM theory with auxiliary bosons Lattice 2015 13



Outline

0 Perturbation theory
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Perturbation theory

Setup

@ Aim: determine relation between 1 — a and Wilson's coupling gy for fixed Nj
@ Problem I: expansion of the log

o o
5= 3i0g (1= Z (U +U}))= Moo (1= 275 e+ -2)

‘O(
1—

@ Problem ll: saddle-point analysis (after expansion of the log) is not possible

:—NDZZ ( ) Tr((UerUI’g_z)”)

P =1l

Wl

cosp—1
a( »—1)

<1 Yo = a<

higher orders in U + U — 2 are not suppressed (parametr. U, = e/¥1~%H)
— non-Gaussian integrals
@ Workaround: first keep a < % fixed, take Np — oo; then analytically continue
gw(a, Np) to small 1 —a
@ n = 1-term corresponds to Wilson’s gauge action, with coupling constant
1 o

=Np——
g7 2(1—-a)

Robert Lohmayer Induced YM theory with auxiliary bosons Lattice 2015 15



Perturbation theory

Background field method

@ For fixed a, compute

> — (14 (@) +caa)gf +..) N2
— == (1+ca(a)g; +ca(a)g) +. .. — =Np———
9w o : : of 21-a)

@ Parametrize link variables through quantum field g, and background field A,

UH (X) — e/’agqu(x) UI(JO)(X) , U‘(JO)(X) — e/aA,_,(X)

@ Compute effective action I'yw[A] to quadratic order in A

e~ TwlAl o f [Dgle—SvwiAd]
1-PI

@ Relation between g, and gw from I/[A] = Tw[A] in the continuum limit

Robert Lohmayer Induced YM theory with auxiliary bosons Lattice 2015 16



Perturbation theory

Expansion of the action

@ Gauge-fixing in background-field Feynman gauge, Sqgf = at ZXTr(ZH DLO)qN)Z
with lattice covariant derivative (involving only the background field)
By g(x) = 1 (UL (= mg(x— U (x— ) — 9(x))
— T[A]is mvariant under gauge transformations

@ Terms of order A¥ (k =0, 1, 2) from Tr(Up + U;_f) —2)"in the induced action: S,(n’k)

[oe]
0 1 2
S1= Swlgw=a + ) (Sl(n P45 4l )+O(A3))
n=2

(n0) nin_ @92 2n 2011

S =(-1) 2/a—2)1 E L 2n Tr[qu (x)*" + 0 (gg*"* )]
(n,1) +1 a2ngzn—3 2n—-1 2

S i Tr|A X)) + O (gAgq"
A e Y = XE“ (A ()auy (x)°" 1 + O (9AG*")]

2n 2n—
(n.2) a —m—
S e e 2T S A (300 (00 A (30 (30777

X1,V m=0
+3 (Auv X)quv (X)"” 1)2+O(A29q2n_1)]

Guv(X) = qu(X) + qv(X + 1) — qu(X + V) — qv(X)
Auv(X) = Au(X) +Av(X + ) —Au(x + V) —Ay(x)
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Perturbation theory

Expectation values

@ Split action in free action S¢[q] for quantum field g (terms of order g2A0),
classical piece S¢[A] (terms independent of q) and 'interaction’ terms

1 1
—TA] —ScilA] —5r[q] (=S k —ScllA] —{(=S; k
el o o=Sd Jl.p.[D‘”e ' §k o (=Sint[A, ) o 70 Ek o ((=Simla, ).,

@ Omitted: integrals over ghost fields (don’t contribute to LO and relevant NLO
terms)

@ Expectation values w.r.t. free action
at b b
Sr=— 2, 4,(98a,(x)
X,M,b

(a20005()) = ap8vD(x —y)

with standard lattice propagator for a massless scalar field

D(x) j - ipx a®?
X) = e
—wa (2m)? " 3,2(1—cos(apy))
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Perturbation theory

One-loop result

@ S includes Sy (n = 1-term), corresponding terms cancel in I'/[A] — T'w[A]
@ coefficient c1(a) (in g;vz =g/ % +ci(a)+...) is determined from

1
<s}2'2)>7 2(1 3 ZZ 2 X)Ab <q (x)q? ()>Tr|:tatbtctd+§tatctbtd:|

2N%2 -3 o
—_—— < 7a4_djddx T (x)2 + ...
d( 8N, )2(1—0{) MZV w(X)"+

@ Comparison with S¢i[A] = 7.34 dfdixY, TR (X)? + ...
leads to (in d dimensions)

2N2-3) a
c1(@) :_( Ned ) 2(1—a)
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Perturbation theory

Relevant two-loop result

@ At order g7, I} contains terms of order (1—a)~? and (1—a)™*

o 2 o
c2(a) =22 (2(1—0()) te2 (2(1—0{))

@ We are only interested in c3,—>, obtained from

1
<SI(3,2) _ S1(2,0)51(2,2) . 751(2,1)51(2,1)>

2
@ Result:
—3N2+6 N§—6N§+18(3 h )
Cr 2= —
a d2N2 N2 (d—1) \gz AT
T dik  diq (sin(ky) + sin(g1) — sin(ky +q1))?
]d=j 7 P
—n (2m)% (2m) (22y — cos(ky)) )(ZZU — cos(qu)) )(ZZp —cos kp+qp)))
1
J=45 J5~0.0085535415
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Perturbation theory

Reinterpretation of the result

In terms of a and Np, we have (from Ny — oo at fixed o < %)

1 1 2 4 ! .
%:7(1—%&(0{)9, +C2(a)g; +) gTz:me
a
cl(a)7c1—1(2(1 a))
2
Cz(a):Cz,—z(L) +C2’_1(L)
2(1—a) 2(1=0)
1
972: ﬁ [Nb +c1,-1+C2,—2/Np + O(NEZ)] +0((1~a))
w

=do(Np)

For the limit a — 1 at fixed Np, natural definition of coupling constant g;:

1 do(Ns) o
—~> = doNp

a7 2(1—a)

! 1(1 d1(Np) )
— = 5 (1 +0a1(Np)g; +
gy &7 !
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merical results

Outline

e Numerical results
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Numerical results

Numerical results

@ For Nc =2 in d = 3 dimensions, simulate both Wilson and induced action
@ Use Sommer parameter to set scale and match gw to 1 — o (at fixed Np)
@ Results for other observables agree well after matching

[Brandt & Wettig, PoS(LATTICE2014)307]

@ Compare coefficient of ﬁ in giz to perturbative result dg
w

do(Np;Ne=2,d =3) 1 5 0.0908283

=1—— N3
Np 6N NG (™)
1 T T T T T T : : : :
— - — one-loop PT
0.8 —— two-loop PT ||
T . num. res.
$
N 0.6 [~ RS |
Q >3
2 RN
x 0.4 \\\\ |
\\ L 4
0.2 \\\\,
0 | | | | | | | | | |

0 01 02 03 04 05 0.6 0.7 0.8 09 1
Nt
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Q Summary and perspectives
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Summary and perspectives

@ Induced SU(N() action exhibits continuum limit as o — 1 for fixed Np > N — %
(Np = Nc — 3 for U(Nc))

@ Np>N.— % is sufficient but not necessary for the continuum limit in 2d to be in
the universality class of YM theory (Np > N + % for U(N¢))

@ Perturbation theory for o — 1 is problematic

@ Relation between coupling constants g, and gy determined by first taking
Np — oo at fixed o < % and analytic continuation to small 1 — o

@ Good agreement with numerical results for SU(2) in 3d

Future directions:

@ Numerical simulations of SU(3) in 4d

@ Make use of bosonized version of gauge action (for full QCD)
@ Integration over link variables

1 y
J due3 (VA+UTAT) o ——= > (2= 6vo) cos(ve) det [ Xy 1 (A)]
SU(N) AN) i3

@ Duality transformation (variant of color-flavor transformation)
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