Induced YM theory with auxiliary bosons

Robert Lohmayer

in collaboration with

Bastian Brandt and Tilo Wettig

University of Regensburg

Lattice 2015

SFB TR55

Robert Lohmayer

Induced YM theory with auxiliary bosons

Motivation	Induced action	Continuum limit	Perturbation theory	Numerical results	Summary
Outline					

- Induced lattice gauge action
- Continuum limit
- Perturbation theory
 - 5 Numerical results

Motivation	Induced action	Continuum limit	Perturbation theory	Numerical results	Summary
Outline					

Induced lattice gauge action

Continuum limit

Perturbation theory

Motivation	Induced action	Continuum limit	Perturbation theory	Numerical results	Summary
Motivatio	on				

- Persistent challenges for lattice QCD, e.g., sign problem for real chemical potential, critical slowing down, volume scaling...
 - → worthwhile to explore alternative discretizations of Yang-Mills theory
- Idea: induce gauge dynamics by auxiliary fields coupled linearly to the gauge field
 - $\rightarrow\,$ analytical methods / simulation algorithms used in strong-coupling approaches become applicable
- Most earlier approaches require infinite number of infinitely heavy auxiliary fields (or do not have the desired YM continuum limit)
- Approach of Budczies and Zirnbauer [arXiv:math-ph/0305058, 2003]: induced $U(N_c)$ pure YM theory with $N_b \ge N_c$ auxiliary fields
- In the following: slightly modified version of BZ approach (curing a trivial sign problem) adapted to $SU(N_c)$

Outline

Motivation

Continuum limit

Perturbation theory

Plaquette weight function

• Instead of familiar Wilson weight factor $\omega_W(U_p) = \exp\left[\frac{1}{g_W^2} \operatorname{Tr}\left(U_p + U_p^{\dagger} - 2\right)\right]$ for plaquette variables $U_p \equiv U_{\mu}(x)U_{\nu}(x+\mu)U_{\mu}^{\dagger}(x+\nu)U_{\nu}^{\dagger}(x) \in \operatorname{SU}(N_c)$, consider pure gauge plaquette weight factor

$$\omega(U_{\rho}) = \det^{-N_{b}} \left(1 - \frac{\alpha}{2} (U_{\rho} + U_{\rho}^{\dagger}) \right) \qquad 0 < \alpha \le 1, \quad N_{b} > 0$$
$$Z = \int \left[dU_{\mu} \right] \prod_{\rho} \omega(U_{\rho}) \qquad p \equiv (x; \mu < \nu)$$

• For integer N_b , inverse determinants can be written as integrals over N_b complex auxiliary boson fields (in the fundamental representation) with $m \ge 2$, $\frac{2}{\alpha} = m^4 - 4m^2 + 2$

$$\begin{split} \prod_{\rho} \omega(U_{\rho}) &= \int \left[d\phi \right] e^{-S_{b}[\bar{\phi}, \phi, U]} \\ S_{b}[\bar{\phi}, \phi, U] &= \sum_{b=1}^{N_{b}} \sum_{\rho} \sum_{j=1}^{4} \left[m \bar{\phi}_{b,\rho}(x_{j}^{\rho}) \phi_{b,\rho}(x_{j}^{\rho}) - \bar{\phi}_{b,\rho}(x_{j+1}^{\rho}) U(x_{j+1}^{\rho}, x_{j}^{\rho}) \phi_{b,\rho}(x_{j}^{\rho}) \right. \\ &\left. - \bar{\phi}_{b,\rho}(x_{j}^{\rho}) U(x_{j}^{\rho}, x_{j+1}^{\rho}) \phi_{b,\rho}(x_{j+1}^{\rho}) \right] \end{split}$$

Limits

• Trivial limit $N_b \rightarrow \infty$, $\alpha \rightarrow 0$ with $N_b \alpha$ fixed

$$S(U_p) = -\log \det^{-N_b} \left(1 - \frac{\alpha}{2} (U_p + U_p^{\dagger}) \right) = N_b \operatorname{Tr} \log (\dots) \to -\frac{\alpha N_b}{2} \operatorname{Tr} \left(U_p + U_p^{\dagger} \right)$$

- Limit $\alpha \rightarrow 1$ at fixed N_b à la Budczies and Zirnbauer: existence and nature of the continuum limit depend on N_c and N_b (details for SU(N_c) later)
- Limit $N_b \rightarrow \infty$ at fixed α allows for systematic saddle-point analysis (perturbation theory)

Motivation	Induced action	Continuum limit	Perturbation theory	Numerical results	Summary
Outline					

- Induced lattice gauge action
- Continuum limit
- Perturbation theory
- 5 Numerical results

Character expansion

- At fixed N_b , determine if $\omega(U) = \det^{-N_b} \left(1 \frac{\alpha}{2}(U + U^{\dagger})\right) \rightarrow \delta(U)$ as $\alpha \rightarrow 1$
- Peter-Weyl theorem: δ -function on group manifold as linear combination of characters χ_{λ} of all irreducible representations λ (with dim. d_{λ})

$$\delta(U) \propto \sum_{ ext{all irreps }\lambda} d_\lambda \chi_\lambda(U)$$

• Expand weight in irreducible characters

$$\omega(U) = \sum_{\lambda} c_{\lambda}(\alpha) \chi_{\lambda}(U) \qquad \qquad c_{\lambda}(\alpha) = \int dU \omega(U) \chi_{\lambda}(U^{-1})$$

• Properly normalized weight function ($\lambda = 0$ corresponds to the trivial rep. U = 1)

$$\mathcal{Z} \equiv \int dU\omega(U) = c_0(\alpha)$$
$$\overline{\omega}(U) \equiv \frac{1}{\mathcal{Z}}\omega(U) = \sum_{\lambda} \frac{c_{\lambda}(\alpha)}{c_0(\alpha)} \chi_{\lambda}(U)$$

Expansion for small $1 - \alpha$

To compute $\lim_{\alpha \to 1} c_{\lambda}/c_0$, parametrize $U = e^{i\sqrt{\frac{2}{\alpha}(1-\alpha)}H}$ with $H \in su(N_c)$

$$dU = \sqrt{\det g(H)} \left(\frac{2}{\alpha}(1-\alpha)\right)^{\frac{N_c^2 - 1}{2}} dH$$
$$g(H) = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k+2)!} \left(\frac{2}{\alpha}(1-\alpha)\right)^k H_{adj}^{2k}$$

and expand the integrand in $1 - \alpha$

$$\det^{-N_b}\left(1-\frac{\alpha}{2}\left(U+U^{\dagger}\right)\right) = \frac{\det^{-N_b}\left(1+H^2\right)}{(1-\alpha)^{N_bN_c}}\left(1+N_b\frac{1-\alpha}{6\alpha}\operatorname{Tr}\frac{H^4}{1+H^2}+\ldots\right)$$
$$\chi_{\lambda}\left(e^{-i\sqrt{\frac{2}{\alpha}}(1-\alpha)H}\right) = d_{\lambda}\left(1-\frac{C_2^{\mathrm{SU}(N_c)}(\lambda)}{N_c^2-1}(1-\alpha)\operatorname{Tr}H^2+\ldots\right)$$

Interchange limit and integral

• As long as $\int_{su(N_c)} dH \det^{-N_b}(1+H^2)$ exists, interchanging $\lim_{\alpha \to 1} and \int dH$ gives

$$\lim_{\alpha \to 1} \frac{c_{\lambda}(\alpha)}{c_{0}(\alpha)} = d_{\lambda} \qquad \Rightarrow \qquad \lim_{\alpha \to 1} \overline{\omega}(U) = \sum_{\lambda} d_{\lambda} \chi_{\lambda}(U) \propto \delta(U)$$

In the eigenvalue parametrization

$$\int_{\mathsf{su}(N_c)} dH \, \det^{-N_b}(1+H^2) \propto \int_{-\infty}^{\infty} \prod_{j=1}^{N_c} dz_j \delta\left(\sum_{j=1}^{N_c} z_j\right) \left(\prod_{j< k} (z_j - z_k)^2\right) \prod_{j=1}^{N_c} (1+z_j^2)^{-N_b}$$

we see that the integral exists for $N_b > N_c - \frac{5}{4}$

- $N_b > N_c \frac{5}{4}$ is a sufficient but not necessary condition for the existence of the continuum limit
- Alternative, more direct approach (using the eigenvalue parametrization of *U*) shows that the continuum limit exists if and only if $N_b \ge N_c \frac{5}{4}$ (same method for U(N_c) leads to $N_b \ge N_c \frac{1}{2}$ as condition for continuum limit)

Check for $N_c = 2, 3$

- For SU(2): explicit calculation of coefficients in character expansion confirms bound
- For SU(3): numerically compute $\frac{1}{N_c} \langle \text{Tr } U \rangle$ with single plaquette weight for $N_b = 1, 1.5, 1.7, N_b = 1.75, N_b = 1.8, 2, 3, 4$

Nature of continuum limit

- $\bullet\,$ To determine the nature of the continuum limit, expand the coefficients c_λ/c_0 to linear order in $1-\alpha$
- Interchange again expansion in (1α) and $\int dH$, as long as integrals are finite
- $\int_{su(N_c)} dH \det^{-N_b} (1+H^2) \operatorname{Tr} H^2$ exists if $N_b > N_c \frac{3}{4}$
- We get $N_b > N_c \frac{3}{4}$ as sufficient but not necessary condition for

$$\frac{c_{\lambda}(\alpha)}{c_{0}(\alpha)} = d_{\lambda} \left(1 - (1 - \alpha) \frac{C_{2}^{SU(N_{c})}(\lambda)}{N_{c}^{2} - 1} \frac{\int_{SU(N_{c})} dH \det^{-N_{b}}(1 + H^{2}) \operatorname{Tr} H^{2}}{\int_{SU(N_{c})} dH \det^{-N_{b}}(1 + H^{2})} + \dots \right)$$

• In this case, $\bar{\omega}(U)$ reduces to the heat-kernel weight factor for small $1 - \alpha$

$$\frac{c_{\lambda}(\alpha)}{c_{0}(\alpha)} = d_{\lambda} e^{-tC_{2}^{SU(N_{c})}(\lambda)}$$

analogous to Wilson's weight factor for small g^2

- Continuum limit in two dimensions is in the universality class of SU(N_c) Yang-Mills theory for $N_b > N_c - \frac{3}{4}$ (condition for U(N_c): $N_b > N_c + \frac{1}{2}$) (Continuum limit in 2*d* is trivial with Migdal's recursion: heat-kernel weight is invariant under subdivision of lattice cells due to character orthogonality)
- Conjecture for 3*d* and 4*d*: equivalence with YM persists (collective nature of fields gets enhanced (compared to 2d); works in favor of universality)

Motivation	Induced action	Continuum limit	Perturbation theory	Numerical results	Summary
Outline					

Induced lattice gauge action

Continuum limit

Perturbation theory

Setup

- Aim: determine relation between 1α and Wilson's coupling g_W for fixed N_b
- Problem I: expansion of the log

$$S = N_b \sum_{p} \operatorname{Tr} \log \left(1 - \frac{\alpha}{2} \left(U_p + U_p^{\dagger} \right) \right) \cong N_b \sum_{p} \operatorname{Tr} \log \left(1 - \frac{\alpha}{2(1-\alpha)} \left(U_p + U_p^{\dagger} - 2 \right) \right)$$
$$\left| \frac{\alpha}{1-\alpha} (\cos \varphi - 1) \right| \le 1 \quad \forall \varphi \quad \Rightarrow \quad \alpha \le \frac{1}{3}$$

• Problem II: saddle-point analysis (after expansion of the log) is not possible

$$S = -N_b \sum_{\rho} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\alpha}{2(1-\alpha)} \right)^n \operatorname{Tr} \left(\left(U_{\rho} + U_{\rho}^{\dagger} - 2 \right)^n \right)$$

higher orders in $U + U^{\dagger} - 2$ are not suppressed (parametr. $U_p = e^{i\sqrt{1-\alpha}H}$) \rightarrow non-Gaussian integrals

- Workaround: first keep $\alpha \leq \frac{1}{3}$ fixed, take $N_b \to \infty$; then analytically continue $g_W(\alpha, N_b)$ to small 1α
- n = 1-term corresponds to Wilson's gauge action, with coupling constant

$$\frac{1}{g_l^2} \equiv N_b \frac{\alpha}{2(1-\alpha)}$$

Robert Lohmayer

Background field method

• For fixed α , compute

$$\frac{1}{g_W^2} = \frac{1}{g_I^2} \left(1 + c_1(\alpha) g_I^2 + c_2(\alpha) g_I^4 + \dots \right) \qquad \qquad \frac{1}{g_I^2} = N_b \frac{\alpha}{2(1-\alpha)}$$

• Parametrize link variables through quantum field q_{μ} and background field A_{μ}

$$U_{\mu}(x) = e^{iagq_{\mu}(x)}U_{\mu}^{(0)}(x), \qquad U_{\mu}^{(0)}(x) = e^{iaA_{\mu}(x)}$$

Compute effective action Γ_{I/W}[A] to quadratic order in A

$$e^{-\Gamma_{I/W}[A]} \propto \int_{1\text{-PI}} [Dq] e^{-S_{I/W}[A,q]}$$

• Relation between g_I and g_W from $\Gamma_I[A] = \Gamma_W[A]$ in the continuum limit

Expansion of the action

- Gauge-fixing in background-field Feynman gauge, $S_{gf} = a^4 \sum_x \text{Tr} \left(\sum_\mu \bar{D}_\mu^{(0)} q_\mu \right)^2$ with lattice covariant derivative (involving only the background field) $\bar{D}_\mu^{(0)}g(x) = \frac{1}{a} \left(U_\mu^{(0)\dagger}(x-\mu)g(x-\mu)U_\mu^{(0)}(x-\mu) - g(x) \right)$ $\rightarrow \Gamma[A]$ is invariant under gauge transformations
- Terms of order A^k (k = 0, 1, 2) from $\text{Tr}(U_p + U_p^{\dagger} 2)^n$ in the induced action: $S_l^{(n,k)}$

$$S_{l} = S_{W}|_{g_{W}=g_{l}} + \sum_{n=2}^{\infty} \left(S_{l}^{(n,0)} + S_{l}^{(n,1)} + S_{l}^{(n,2)} + \mathcal{O}(A^{3}) \right)$$

$$\begin{split} S_{l}^{(n,0)} &= (-1)^{n+1} \frac{a^{2n} g^{2n-2}}{(2/\alpha-2)^{n-1}} \sum_{x,\mu,\nu} \frac{1}{2n} \operatorname{Tr} \left[q_{\mu\nu}(x)^{2n} + \mathcal{O}\left(gq^{2n+1}\right) \right] \\ S_{l}^{(n,1)} &= (-1)^{n+1} \frac{a^{2n} g^{2n-3}}{(2/\alpha-2)^{n-1}} \sum_{x,\mu,\nu} \operatorname{Tr} \left[A_{\mu\nu}(x) q_{\mu\nu}(x)^{2n-1} + \mathcal{O}\left(gAq^{2n}\right) \right] \\ S_{l}^{(n,2)} &= (-1)^{n+1} \frac{a^{2n} g^{2n-4}}{(2/\alpha-2)^{n-1}} \sum_{x,\mu,\nu} \operatorname{Tr} \left[\sum_{m=0}^{n-2} A_{\mu\nu}(x) q_{\mu\nu}(x)^m A_{\mu\nu}(x) q_{\mu\nu}(x)^{2n-m-2} \right. \\ &+ \frac{1}{2} \left(A_{\mu\nu}(x) q_{\mu\nu}(x)^{n-1} \right)^2 + \mathcal{O}\left(A^2 gq^{2n-1}\right) \right] \end{split}$$

$$q_{\mu\nu}(x) \equiv q_{\mu}(x) + q_{\nu}(x+\mu) - q_{\mu}(x+\nu) - q_{\nu}(x) A_{\mu\nu}(x) \equiv A_{\mu}(x) + A_{\nu}(x+\mu) - A_{\mu}(x+\nu) - A_{\nu}(x)$$

Expectation values

• Split action in free action $S_f[q]$ for quantum field q (terms of order q^2A^0), classical piece $S_{cl}[A]$ (terms independent of q) and 'interaction' terms

$$e^{-\Gamma[A]} \propto e^{-S_{\rm cl}[A]} \int_{1-{\rm Pl}} [Dq] e^{-S_f[q]} \sum_k \frac{1}{k!} (-S_{\rm int}[A,q])^k \propto e^{-S_{\rm cl}[A]} \sum_k \frac{1}{k!} \left\langle (-S_{\rm int}[A,q])^k \right\rangle_{1-{\rm Pl}}$$

- Omitted: integrals over ghost fields (don't contribute to LO and relevant NLO terms)
- Expectation values w.r.t. free action

$$S_{f} = \frac{a^{4}}{2} \sum_{x,\mu,b} q^{b}_{\mu}(x) \Box q^{b}_{\mu}(x)$$
$$\left\langle q^{a}_{\mu}(x) q^{b}_{\nu}(y) \right\rangle = \delta_{ab} \delta_{\mu\nu} D(x-y)$$

with standard lattice propagator for a massless scalar field

$$D(x) = \int_{-\pi/a}^{\pi/a} \frac{d^d p}{(2\pi)^d} e^{ipx} \frac{a^{d-2}}{\sum_{\mu} 2(1 - \cos(ap_{\mu}))}$$

- S_l includes S_W (n = 1-term), corresponding terms cancel in $\Gamma_l[A] \Gamma_W[A]$
- coefficient $c_1(\alpha)$ (in $g_W^{-2} = g_I^{-2} + c_1(\alpha) + ...$) is determined from

$$\left\langle S_{I}^{(2,2)} \right\rangle = -\frac{a^{4}\alpha}{2(1-\alpha)} \sum_{x} \sum_{\mu,\nu} A_{\mu\nu}^{a}(x) A_{\mu\nu}^{b}(x) \left\langle q_{\mu\nu}^{c}(x) q_{\mu\nu}^{d}(x) \right\rangle \operatorname{Tr} \left[t_{a}t_{b}t_{c}t_{d} + \frac{1}{2}t_{a}t_{c}t_{b}t_{d} \right]$$
$$\rightarrow -\frac{4}{d} \left(\frac{2N_{c}^{2}-3}{8N_{c}} \right) \frac{\alpha}{2(1-\alpha)} a^{4-d} \int d^{d}x \sum_{\mu,\nu} \operatorname{Tr} F_{\mu\nu}(x)^{2} + \dots$$

• Comparison with $S_{cl}[A] = \frac{1}{2g_l^2} a^{4-d} \int d^d x \sum_{\mu,\nu} \text{Tr} F_{\mu\nu}(x)^2 + \dots$ leads to (in *d* dimensions)

$$c_1(\alpha) = -\left(\frac{2N_c^2 - 3}{N_c d}\right) \frac{\alpha}{2(1 - \alpha)}$$

Relevant two-loop result

• At order g_l^2 , Γ_l contains terms of order $(1-\alpha)^{-2}$ and $(1-\alpha)^{-1}$

$$c_2(\alpha) = c_{2,-2} \left(\frac{\alpha}{2(1-\alpha)}\right)^2 + c_{2,-1} \left(\frac{\alpha}{2(1-\alpha)}\right)$$

• We are only interested in c_{2,-2}, obtained from

$$\left\langle S_{l}^{(3,2)} - S_{l}^{(2,0)} S_{l}^{(2,2)} - \frac{1}{2} S_{l}^{(2,1)} S_{l}^{(2,1)} \right\rangle$$

Result:

$$c_{2,-2} = \frac{N_c^4 - 3N_c^2 + 6}{d^2 N_c^2} - \frac{N_c^4 - 6N_c^2 + 18}{2N_c^2(d-1)} \left(\frac{3}{d^2} - 4(4-d)J_d\right)$$

$$\begin{split} J_d &\equiv \int_{-\pi}^{\pi} \frac{d^d k}{(2\pi)^d} \frac{d^d q}{(2\pi)^d} \frac{(\sin(k_1) + \sin(q_1) - \sin(k_1 + q_1))^2}{\left(2\sum_{\gamma} (1 - \cos(k_{\gamma}))\right) \left(2\sum_{\mu} (1 - \cos(q_{\mu}))\right) \left(2\sum_{\rho} (1 - \cos(k_{\rho} + q_{\rho}))\right)} \\ J_2 &= \frac{1}{32}, \qquad J_3 \approx 0.0085535415 \end{split}$$

Reinterpretation of the result

In terms of α and N_b , we have (from $N_b \rightarrow \infty$ at fixed $\alpha \leq \frac{1}{3}$)

$$\frac{1}{g_W^2} = \frac{1}{g_l^2} \left(1 + c_1(\alpha)g_l^2 + c_2(\alpha)g_l^4 + \dots \right) \qquad \frac{1}{g_l^2} = N_b \frac{\alpha}{2(1-\alpha)}$$

$$c_1(\alpha) = c_{1,-1} \left(\frac{\alpha}{2(1-\alpha)} \right)$$

$$c_2(\alpha) = c_{2,-2} \left(\frac{\alpha}{2(1-\alpha)} \right)^2 + c_{2,-1} \left(\frac{\alpha}{2(1-\alpha)} \right)$$

$$\frac{1}{g_W^2} = \frac{\alpha}{2(1-\alpha)} \underbrace{\left[N_b + c_{1,-1} + c_{2,-2}/N_b + \mathcal{O}\left(N_b^{-2}\right) \right]}_{\equiv d_0(N_b)} + \mathcal{O}((1-\alpha)^0)$$

For the limit $\alpha \to 1$ at fixed N_b , natural definition of coupling constant \tilde{g}_l :

$$\frac{1}{\tilde{g}_l^2} \equiv d_0(N_b) \frac{\alpha}{2(1-\alpha)}$$
$$\frac{1}{g_W^2} = \frac{1}{\tilde{g}_l^2} \left(1 + d_1(N_b) \tilde{g}_l^2 + \dots \right)$$

Motivation	Induced action	Continuum limit	Perturbation theory	Numerical results	Summary
Outline					

Induced lattice gauge action

Continuum limit

Perturbation theory

- For $N_c = 2$ in d = 3 dimensions, simulate both Wilson and induced action
- Use Sommer parameter to set scale and match g_W to 1α (at fixed N_b)
- Results for other observables agree well after matching [Brandt & Wettig, PoS(LATTICE2014)307]

• Compare coefficient of
$$\frac{1}{2(1-\alpha)}$$
 in $\frac{1}{g_W^2}$ to perturbative result d_0

$$\frac{d_0(N_b; N_c = 2, d = 3)}{N_b} = 1 - \frac{5}{6N_b} + \frac{0.0908283}{N_b^2} + \mathcal{O}(N_b^{-3})$$

Motivation	Induced action	Continuum limit	Perturbation theory	Numerical results	Summary
Outline					

Induced lattice gauge action

Continuum limit

Perturbation theory

Summary and perspectives

- Induced SU(N_c) action exhibits continuum limit as $\alpha \rightarrow 1$ for fixed $N_b \ge N_c \frac{5}{4}$ ($N_b \ge N_c - \frac{1}{2}$ for U(N_c))
- $N_b > N_c \frac{3}{4}$ is sufficient but not necessary for the continuum limit in 2d to be in the universality class of YM theory ($N_b > N_c + \frac{1}{2}$ for U(N_c))
- Perturbation theory for $\alpha \rightarrow 1$ is problematic
- Relation between coupling constants g_l and g_W determined by first taking $N_b \rightarrow \infty$ at fixed $\alpha \leq \frac{1}{3}$ and analytic continuation to small 1α
- Good agreement with numerical results for SU(2) in 3d

Future directions:

- Numerical simulations of SU(3) in 4d
- Make use of bosonized version of gauge action (for full QCD)
- Integration over link variables

$$\int_{\mathsf{SU}(N_c)} dU e^{\frac{1}{2} \left(U A + U^{\dagger} A^{\dagger} \right)} \propto \frac{1}{\Delta(\lambda^2)} \sum_{\nu=0}^{\infty} (2 - \delta_{\nu 0}) \cos(\nu \phi) \det \left[\lambda_i^{j-1} I_{\nu+j-1}(\lambda_i) \right]$$

• Duality transformation (variant of color-flavor transformation)