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Motivation

Persistent challenges for lattice QCD, e.g., sign problem for real chemical
potential, critical slowing down, volume scaling...
→ worthwhile to explore alternative discretizations of Yang-Mills theory

Idea: induce gauge dynamics by auxiliary fields coupled linearly to the gauge
field

→ analytical methods / simulation algorithms used in strong-coupling
approaches become applicable

Most earlier approaches require infinite number of infinitely heavy auxiliary
fields (or do not have the desired YM continuum limit)

Approach of Budczies and Zirnbauer [arXiv:math-ph/0305058, 2003]:
induced U(Nc) pure YM theory with Nb ≥ Nc auxiliary fields

In the following: slightly modified version of BZ approach (curing a trivial sign
problem) adapted to SU(Nc)
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Plaquette weight function

Instead of familiar Wilson weight factor ωW(Up) = exp
�

1
g2
W

Tr
�

Up +U†
p
− 2

�

�

for

plaquette variables Up ≡ Uμ(x)Uν(x+ μ)U†
μ

(x+ ν)U†
ν

(x) ∈ SU(Nc),
consider pure gauge plaquette weight factor

ω(Up)= det−Nb
�

1−
α

2
(Up +U†

p
)

�

0 < α ≤ 1, Nb > 0

Z =

∫

�

dUμ
�

∏

p

ω(Up) p ≡ (x;μ < ν)

For integer Nb, inverse determinants can be written as integrals over
Nb complex auxiliary boson fields (in the fundamental representation)
with m ≥ 2, 2

α = m4 − 4m2 + 2

∏

p

ω(Up) =

∫

[dϕ]e−Sb[ϕ̄,ϕ,U]

Sb[ϕ̄, ϕ,U] =

Nb
∑

b=1

∑

p

4
∑

j=1

h
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p
j )ϕb,p(x

p
j )− ϕ̄b,p(x

p
j+1)U(x

p
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p
j )ϕb,p(x
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p
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p
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p
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Limits

Trivial limit Nb →∞, α→ 0 with Nbα fixed

S(Up) = − logdet−Nb
�

1−
α

2
(Up +U†

p
)

�

= Nb Tr log (. . .)→ −
αNb

2
Tr
�

Up +U†
p

�

Limit α→ 1 at fixed Nb à la Budczies and Zirnbauer: existence and nature of the
continuum limit depend on Nc and Nb (details for SU(Nc) later)
Limit Nb →∞ at fixed α allows for systematic saddle-point analysis
(perturbation theory)
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4Nc − 5
4

PT bound
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Character expansion

At fixed Nb, determine if ω(U) = det−Nb
�

1− α
2 (U+U†)

�

→ δ(U) as α→ 1

Peter-Weyl theorem: δ-function on group manifold as linear combination of
characters χλ of all irreducible representations λ (with dim. dλ)

δ(U) ∝
∑

all irreps λ

dλχλ(U)

Expand weight in irreducible characters

ω(U) =
∑

λ

cλ(α)χλ(U) cλ(α) =

∫

dUω(U)χλ(U−1)

Properly normalized weight function (λ = 0 corresponds to the trivial rep. U = 1)

Z ≡
∫

dUω(U) = c0(α)

ω(U) ≡
1

Z
ω(U) =

∑

λ

cλ(α)

c0(α)
χλ(U)
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Expansion for small 1− α

To compute limα→1 cλ/c0, parametrize U = ei
r

2
α (1−α)H with H ∈ su(Nc)

dU =
Æ

detg(H)

�

2

α
(1− α)

�

N2
c−1
2

dH

g(H) =
1

2
+

∞
∑

k=1

(−1)k

(2k + 2)!

�

2

α
(1− α)

�k

H2k
adj

and expand the integrand in 1− α

det−Nb
�

1−
α

2

�

U+U†
�

�

=
det−Nb

�

1 +H2
�

(1− α)NbNc

�

1 +Nb
1− α

6α
Tr

H4

1 +H2
+ . . .

�

χλ

�

e−i
r

2
α (1−α)H

�

= dλ

 

1−
C

SU(Nc)

2 (λ)

N2
c
− 1

(1− α) TrH2 + . . .

!

Robert Lohmayer Induced YM theory with auxiliary bosons Lattice 2015 10



Motivation Induced action Continuum limit Perturbation theory Numerical results Summary

Interchange limit and integral

As long as
∫

su(Nc)
dHdet−Nb (1 +H2) exists, interchanging limα→1 and

∫

dH gives

lim
α→1

cλ(α)

c0(α)
= dλ ⇒ lim

α→1
ω(U) =

∑

λ

dλχλ(U) ∝ δ(U)

In the eigenvalue parametrization

∫

su(Nc)

dHdet−Nb (1 +H2) ∝
∫ ∞

−∞

Nc
∏

j=1

dzjδ

 

Nc
∑

j=1

zj

! 

∏

j<k

(zj − zk)2

!

Nc
∏

j=1

�

1 + z2
j

�−Nb

we see that the integral exists for Nb > Nc − 5
4

Nb > Nc − 5
4 is a sufficient but not necessary condition for the existence of the

continuum limit

Alternative, more direct approach (using the eigenvalue parametrization of U)
shows that the continuum limit exists if and only if Nb ≥ Nc − 5

4

(same method for U(Nc) leads to Nb ≥ Nc − 1
2 as condition for continuum limit)
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Check for Nc = 2,3

For SU(2): explicit calculation of coefficients in character expansion confirms
bound

For SU(3): numerically compute 1
Nc
〈TrU〉 with single plaquette weight

for Nb = 1,1.5,1.7, Nb = 1.75, Nb = 1.8,2,3,4
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Nature of continuum limit

To determine the nature of the continuum limit, expand the coefficients cλ/c0 to
linear order in 1− α
Interchange again expansion in (1− α) and

∫

dH, as long as integrals are finite
∫

su(Nc)
dHdet−Nb (1 +H2) TrH2 exists if Nb > Nc − 3

4

We get Nb > Nc − 3
4 as sufficient but not necessary condition for

cλ(α)

c0(α)
= dλ

 

1− (1− α)
C

SU(Nc)

2 (λ)

N2
c
− 1

∫

su(Nc)
dHdet−Nb (1 +H2) TrH2

∫

su(Nc)
dHdet−Nb (1 +H2)

+ . . .

!

In this case, ω̄(U) reduces to the heat-kernel weight factor for small 1− α

cλ(α)

c0(α)
= dλe

−t CSU(Nc)
2 (λ)

analogous to Wilson’s weight factor for small g2

Continuum limit in two dimensions is in the universality class of SU(Nc)

Yang-Mills theory for Nb > Nc − 3
4 (condition for U(Nc): Nb > Nc + 1

2 )
(Continuum limit in 2d is trivial with Migdal’s recursion: heat-kernel weight is
invariant under subdivision of lattice cells due to character orthogonality)
Conjecture for 3d and 4d: equivalence with YM persists (collective nature of
fields gets enhanced (compared to 2d); works in favor of universality)
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Setup

Aim: determine relation between 1− α and Wilson’s coupling gW for fixed Nb

Problem I: expansion of the log

S = Nb

∑

p

Tr log
�

1−
α

2

�

Up +U†
p

�

�

Ò= Nb

∑

p

Tr log
�

1−
α

2(1− α)

�

Up +U†
p
− 2

�

�

�

�

�

�

α

1− α
(cosφ − 1)

�

�

�

�

≤ 1 ∀φ ⇒ α ≤
1

3

Problem II: saddle-point analysis (after expansion of the log) is not possible

S = −Nb

∑

p

∞
∑

n=1

1

n

�

α

2(1− α)

�n

Tr
�
�

Up +U†
p
− 2

�n�

higher orders in U+U† − 2 are not suppressed (parametr. Up = ei
p

1−αH)
→ non-Gaussian integrals
Workaround: first keep α ≤ 1

3 fixed, take Nb →∞; then analytically continue
gW(α,Nb) to small 1− α
n = 1-term corresponds to Wilson’s gauge action, with coupling constant

1

g2
I

≡ Nb
α

2(1− α)
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Background field method

For fixed α, compute

1

g2
W

=
1

g2
I

�

1 + c1(α)g2
I

+ c2(α)g4
I

+ . . .
� 1

g2
I

= Nb
α

2(1− α)

Parametrize link variables through quantum field qμ and background field Aμ

Uμ(x) = eiagqμ(x)U(0)
μ

(x) , U(0)
μ

(x) = eiaAμ(x)

Compute effective action ΓI/W[A] to quadratic order in A

e−ΓI/W [A] ∝
∫

1-PI
[Dq]e−SI/W [A,q]

Relation between gI and gW from ΓI[A] = ΓW[A] in the continuum limit
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Expansion of the action

Gauge-fixing in background-field Feynman gauge, Sgf = a4
∑

x Tr
�

∑

μ D̄
(0)
μ qμ

�2

with lattice covariant derivative (involving only the background field)

D̄
(0)
μ g(x) = 1

a

�

U
(0)†
μ (x− μ)g(x− μ)U

(0)
μ (x− μ)− g(x)

�

→ Γ[A] is invariant under gauge transformations

Terms of order Ak (k = 0,1,2) from Tr(Up +U†
p
− 2)n in the induced action: S

(n,k)

I

SI = SW |gW=gI +
∞
∑

n=2

�

S
(n,0)

I + S
(n,1)

I + S
(n,2)

I + O(A3)
�

S
(n,0)

I = (−1)n+1
a2ng2n−2

(2/α − 2)n−1

∑

x,μ,ν

1

2n
Tr
�

qμν(x)2n + O
�

gq2n+1
��

S
(n,1)

I = (−1)n+1
a2ng2n−3

(2/α − 2)n−1

∑

x,μ,ν

Tr
�

Aμν(x)qμν(x)2n−1 + O
�

gAq2n
��

S
(n,2)

I = (−1)n+1
a2ng2n−4

(2/α − 2)n−1

∑

x,μ,ν

Tr

�

n−2
∑

m=0

Aμν(x)qμν(x)mAμν(x)qμν(x)2n−m−2

+
1

2

�

Aμν(x)qμν(x)n−1
�2

+ O
�

A2gq2n−1
�

�

qμν(x) ≡ qμ(x) + qν(x+ μ)− qμ(x+ ν)− qν(x)

Aμν(x) ≡ Aμ(x) +Aν(x+ μ)− Aμ(x+ ν)− Aν(x)
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Expectation values

Split action in free action Sf [q] for quantum field q (terms of order q2A0),
classical piece Scl[A] (terms independent of q) and ’interaction’ terms

e−Γ[A] ∝ e−Scl[A]

∫

1-PI
[Dq]e−Sf [q]

∑

k

1

k!
(−Sint[A,q])k ∝ e−Scl[A]

∑

k

1

k!

¬

(−Sint[A,q])k
¶

1-PI

Omitted: integrals over ghost fields (don’t contribute to LO and relevant NLO
terms)

Expectation values w.r.t. free action

Sf =
a4

2

∑

x,μ,b

qb
μ

(x)�qb
μ

(x)

¬

qa
μ

(x)qb
ν

(y)
¶

= δabδμνD(x− y)

with standard lattice propagator for a massless scalar field

D(x) =

∫ π/a

−π/a

ddp

(2π)d
eipx

ad−2

∑

μ 2
�

1− cos
�

apμ
��

Robert Lohmayer Induced YM theory with auxiliary bosons Lattice 2015 18



Motivation Induced action Continuum limit Perturbation theory Numerical results Summary

One-loop result

SI includes SW (n = 1-term), corresponding terms cancel in ΓI[A]− ΓW[A]

coefficient c1(α) (in g−2
W = g−2

I + c1(α) + . . .) is determined from

D

S
(2,2)

I

E

= −
a4α

2(1− α)

∑

x

∑

μ,ν

Aa
μν

(x)Ab
μν

(x)
¬

qc
μν

(x)qd
μν

(x)
¶

Tr
�

tatbtctd +
1

2
tatctbtd

�

→ −
4

d

�

2N2
c
− 3

8Nc

�

α

2(1− α)
a4−d

∫

ddx
∑

μ,ν

TrFμν(x)2 + . . .

Comparison with Scl[A] = 1
2g2

I

a4−d ∫ ddx
∑

μ,ν TrFμν(x)2 + . . .

leads to (in d dimensions)

c1(α) = −
�

2N2
c
− 3

Ncd

�

α

2(1− α)

Robert Lohmayer Induced YM theory with auxiliary bosons Lattice 2015 19



Motivation Induced action Continuum limit Perturbation theory Numerical results Summary

Relevant two-loop result

At order g2
I
, ΓI contains terms of order (1− α)−2 and (1− α)−1

c2(α) = c2,−2

�

α

2(1− α)

�2

+ c2,−1

�

α

2(1− α)

�

We are only interested in c2,−2, obtained from
�

S
(3,2)

I − S(2,0)

I S
(2,2)

I −
1

2
S

(2,1)

I S
(2,1)

I

�

Result:

c2,−2 =
N4
c
− 3N2

c
+ 6

d2N2
c

−
N4
c
− 6N2

c
+ 18

2N2
c

(d− 1)

�

3

d2
− 4(4− d)Jd

�

Jd ≡
∫ π

−π

ddk

(2π)d

ddq

(2π)d

(sin(k1) + sin(q1)− sin(k1 + q1))2

�

2
∑

γ(1− cos(kγ))
� �

2
∑

μ(1− cos(qμ))
� �

2
∑

ρ(1− cos(kρ + qρ))
�

J2 =
1

32
, J3 ≈ 0.0085535415

Robert Lohmayer Induced YM theory with auxiliary bosons Lattice 2015 20



Motivation Induced action Continuum limit Perturbation theory Numerical results Summary

Reinterpretation of the result

In terms of α and Nb, we have (from Nb →∞ at fixed α ≤ 1
3 )

1

g2
W

=
1

g2
I

�

1 + c1(α)g2
I

+ c2(α)g4
I

+ . . .
� 1

g2
I

= Nb
α

2(1− α)

c1(α) = c1,−1

�

α

2(1− α)

�

c2(α) = c2,−2

�

α

2(1− α)

�2

+ c2,−1

�

α

2(1− α)

�

1

g2
W

=
α

2(1− α)

�

Nb + c1,−1 + c2,−2/Nb + O
�

N−2
b

��

︸ ︷︷ ︸

≡d0(Nb)

+O((1− α)0)

For the limit α→ 1 at fixed Nb, natural definition of coupling constant g̃I:

1

g̃2
I

≡ d0(Nb)
α

2(1− α)

1

g2
W

=
1

g̃2
I

�

1 + d1(Nb)g̃2
I

+ . . .
�
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Numerical results

For Nc = 2 in d = 3 dimensions, simulate both Wilson and induced action
Use Sommer parameter to set scale and match gW to 1− α (at fixed Nb)
Results for other observables agree well after matching
[Brandt & Wettig, PoS(LATTICE2014)307]

Compare coefficient of 1
2(1−α)

in 1
g2
W

to perturbative result d0

d0(Nb;Nc = 2,d = 3)

Nb
= 1−

5

6Nb
+

0.0908283

N2
b

+ O(N−3
b

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

N−1
b

d
0

(N
b

)/
N
b

one-loop PT

two-loop PT
num. res.
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Summary and perspectives

Induced SU(Nc) action exhibits continuum limit as α→ 1 for fixed Nb ≥ Nc − 5
4

(Nb ≥ Nc − 1
2 for U(Nc))

Nb > Nc − 3
4 is sufficient but not necessary for the continuum limit in 2d to be in

the universality class of YM theory (Nb > Nc + 1
2 for U(Nc))

Perturbation theory for α→ 1 is problematic

Relation between coupling constants gI and gW determined by first taking
Nb →∞ at fixed α ≤ 1

3 and analytic continuation to small 1− α
Good agreement with numerical results for SU(2) in 3d

Future directions:

Numerical simulations of SU(3) in 4d

Make use of bosonized version of gauge action (for full QCD)

Integration over link variables

∫

SU(Nc)

dUe
1
2 (UA+U†A†) ∝

1

∆(λ2)

∞
∑

ν=0

(2− δν0) cos(νϕ) det
�

λ
j−1
i Iν+j−1(λi)

�

Duality transformation (variant of color-flavor transformation)
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