$X(3872)$ and $Y(4140)$ using diquark-antidiquark operators with lattice QCD

M. Padmanath

UNI

Institute for Physics, University of Graz, Graz, Austria.

$$
\text { July 16, } 2015
$$

- In collaboration with C. B. Lang and Sasa Prelovsek
- PRD XX XXXXXX, arXiv:1503.03257

Charmonium spectrum to be explored

S. L. Olsen, arXiv:1411.7738v1 [hep-ex]
 other XYZ with $J^{P C}=1^{++}$.

XYZs near open flavor threshold

```
N. Brambilla, et al., arXiv:1404.3723v2
```

TABLE 10: Quarkonium-like states at the open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

	M M Mov	¢ Mov ${ }^{\text {a }}$ PC	Drococe (mado)	Frenori,	Vod	
$X(3872)$	3871.68 ± 0.17	$<1.21^{++}$	$B \rightarrow K\left(\pi^{+} \pi^{-} J / \psi\right)$	Belle [810, 1030] (>10), BaBar [1031] (8.6)	2003	Ok
			$p \bar{p} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \ldots$	CDF [1032, 1033] (11.6), D0 [1034] (5.2)	2003	Ok
			$p p \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \ldots$	LHCb [1035, [1036] (np)	2012	Ok
			$B \rightarrow K\left(\pi^{+} \pi^{-} \pi^{0} J / \psi\right)$	Belle [1037] (4.3), BaBar [1038] (4.0)	2005	Ok
			$B \rightarrow K(\gamma J / \psi)$	Belle [1039] (5.5), BaBar [1040] (3.5) $\mathrm{LHCb}[1041](>10)$	2005	Ok
			$B \rightarrow K(\gamma \psi(2 S))$	BaBar [1040] (3.6), Belle [1039] (0.2) LHCb [1041] (4.4)	2008	NC!
			$B \rightarrow K\left(D \bar{D}^{*}\right)$	Belle [1042] (6.4). BaBar [1043] (4.9)	2006	Ok
$Z_{c}(3885)^{+}$	3883.9 ± 4.5	$25 \pm 121^{+-}$	$Y(4260) \rightarrow \pi^{-}\left(D D^{*}\right)^{+}$	BES III [1044] (np)	2013	NC!
$Z_{c}(3900)^{+}$	3891.2 ± 3.3	$40 \pm 8 \quad ?^{?-}$	$Y(4260) \rightarrow \pi^{-}\left(\pi^{+} J / \psi\right)$	BES III [1045] (8), Belle [1046] (5.2) T. Xiao et al. [CLEO data] [1047] (>5)	2013	Ok
$Z_{c}(4020)^{+}$	4022.9 ± 2.8	$7.9 \pm 3.7 ?^{?-}$	$Y(4260,4360) \rightarrow \pi^{-}\left(\pi^{+} h_{c}\right)$	BES III [1048] (8.9)	2013	$\mathrm{NC!}$
$Z_{c}(4025)^{+}$	4026.3 ± 4.5	$24.8 \pm 9.5 ?^{?}-$	$Y(4260) \rightarrow \pi^{-}\left(D^{*} \bar{D}^{*}\right)^{+}$	BES III [1049] (10)	2013	NC!
$Z_{b}(10610)^{+}$	10607.2 ± 2.0	$18.4 \pm 2.41^{+-}$	$\Upsilon(10860) \rightarrow \pi(\pi \Upsilon(1 S, 2 S, 3 S))$	Belle [1050 -1052] (>10)	2011	Ok
			$\Upsilon(10860) \rightarrow \pi^{-}\left(\pi^{+} h_{b}(1 P, 2 P)\right)$	Belle [1051] (16)	2011	Ok
			$\Upsilon(10860) \rightarrow \pi^{-}\left(B \bar{B}^{*}\right)^{+}$	Belle [1053] (8)	2012	$\mathrm{NC!}$
$Z_{b}(10650)^{+}$	10652.2 ± 1.5	$11.5 \pm 2.21^{+-}$	$\Upsilon(10860) \rightarrow \pi^{-}\left(\pi^{+} \Upsilon(1 S, 2 S, 3 S)\right)$	Belle [1050, 1057] (>10)	2011	Ok
			$\Upsilon(10860) \rightarrow \pi^{-}\left(\pi^{+} h_{b}(1 P, 2 P)\right)$	Belle [1051] (16)	2011	Ok
			$\Upsilon(10860) \rightarrow \pi^{-}\left(B^{*} \bar{B}^{*}\right)^{+}$	Belle [1053] (6.8)	2012	NC !

XYZs above open charm threshold

N. Brambilla, et al., arXiv:1404.3723v2

TABLE 12: Quarkonium-like states above the corresponding open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

State	M, MeV	ᄃ, MeV	$J^{P C}$	Process (mode)	Experiment (\# ${ }^{\text {a }}$)	Year	I Status
\bar{Y} (3915)	3918.4 ± 1.9	20 ± 5	0/2 $2^{\text {? }}$	$\begin{aligned} & B \rightarrow K(\omega J / \psi) \\ & e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi) \end{aligned}$	Belle [1088] (8), BaBar [1038, [1059) (19) Belle 1000 (7.7), BaBar 1091 (7.6)	$\begin{aligned} & 2004 \\ & 2009 \end{aligned}$	
							Ok
(2p)	$30272+26$	$24+6$	$2++$		Rollo (10993 (5,3) BaBar [1093) (5,8)	2005	Ok
X (3940)	3942_{-8}^{+9}	37_{-17}^{+27}	n? +	$e^{+} e^{-} \rightarrow J / \psi\left(D D^{+}\right)$	Belle [1086, [1087] (6)	2005	NC!
$\begin{aligned} & \text { (4000) } \\ & \psi(4040) \end{aligned}$	4039 ± 1	$235 \pm 42$$80 \pm 10$	1^{--}	$\begin{aligned} & e^{t e} \rightarrow\left(M^{+\pi} \quad J / \varphi\right) \\ & e^{+} e^{-} \rightarrow\left(D^{(\cdot)} \bar{D}^{(\cdot)}(\pi)\right) \end{aligned}$	Bente purs	00	NCI
					PDG [1]	1978	Ok
					Dollo - $10 \times 1 \pm$	9012	
$\begin{aligned} & Z(4050)^{+} \\ & Y(4140) \end{aligned}$	$\begin{aligned} & 4051+24 \\ & 4145.8 \pm 2.6 \end{aligned}$	$\begin{aligned} & 82{ }_{8}^{+551} \\ & 18 \pm 8 \end{aligned}$	$\begin{aligned} & p^{2+} \\ & p^{2+} \end{aligned}$	$\begin{aligned} & \bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} \chi c 1\right) \\ & B^{+} \rightarrow K^{+}(\phi J / \psi) \end{aligned}$	Belle 1096 (5.0), BaBar 1097 (1.1) CDF [10480 (5.0), Belle 11029 (1.9), LHCb [100 (1.4), CMS [110] (>5) D0 1102 (3.1)	$\begin{aligned} & 2008 \\ & 2009 \end{aligned}$	$\begin{aligned} & \mathrm{NCl} \\ & \mathrm{NCl} \end{aligned}$
$\psi(4160)$	4153 ± 3	103 ± 8	1^{--}	$e^{+} e^{-} \rightarrow\left(D^{(\cdot)} D^{(\cdot)}\right)$	PDG []	1978	Ok
					Belle [1095] (6.5)	2013	NCl
$X(4160)$	4156_{-25}^{+29}	139_{-65}^{+113}		$e^{+} e^{-} \rightarrow J / \psi\left(D^{*} \bar{D}^{*}\right)$	Belle [1087] (5.5)	2007	NCl
$Z(4250)^{+}$	$4248{ }_{-15}^{+155}$	$177{ }_{-221}^{392}$??+	$\bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} \chi_{c 1}\right)$	Belle [10960 (5.0), BaBar [1097] (2.0)	2008	NC!
Y (4260)	4250 ± 9	108 ± 12	1^{--}	$e^{+} e^{-} \rightarrow(\pi \pi, J / \psi)$		2005	Ok
				$e^{+} e^{-} \rightarrow\left(f_{0}(980), J / \psi\right)$	BaBar 11003 (np), Belle [1046 (np)	2012	Ok
				$e^{+} e^{-} \rightarrow\left(\pi^{-} Z_{c}(3900)^{+}\right)$	BES III 1045 (8), Belle [10460 (5.2)	2013	Ok
					bas ill [108\% (5)	2012	NCL
$Y(4274)$	4293 ± 20	35 ± 16	$p^{\text {? }}$ +	$B^{+} \rightarrow K^{+}(\phi J / \psi)$	CDF [1098] (3.1), LHCb [1100] (1.0),	2011	$\mathrm{NC!}$

$X(4350) \quad 4350.6_{-5.1}^{+4.6} \quad 13_{-10}^{+18} \quad 0 / 2^{7+} e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$
CMS [1101 (>3), DU [11U2 (np)

> X(3872) from Lattice QCD M. Padmanath University of Graz, Austria. (4 of 19)

Experimental facts : X(3872)

- first observed in Belle 2003 (Belle: PRL 96, 262001.)
- Quantum numbers, $J^{P C}=1^{++}$: (LHCb: PRL 110, 222001.)
- Appears within 1 MeV below $D^{0} \bar{D}^{* 0}$ threshold.

- Preferred strong decay modes $D^{0} \bar{D}^{* 0}, J / \psi \omega$ and $J / \psi \rho$
- The isospin still uncertain
* nearly equal branching fraction to $J / \psi \omega$ and $J / \psi \rho$ decays.
* No charge partner candidates observed.

Experimental facts: $\mathrm{Y}(4140)$

- first observed in $B^{+} \rightarrow K^{+} \phi J / \psi$ decays (CDF : PRL 102, 242002)
- LHCb did not observe such peaks in these decays.
(LHCb: Aaij, et al., PRD 85, 091103).
- CMS confirmed the observation of the peak (Chatrchyan, et al., PLB 734, 261).
- Results from BaBar have much less statistical significance (Lees, et al., 91, 012003).
- Quantum numbers not determined except for $C=+$.
- Appears $\sim 30 \mathrm{MeV}$ above $D_{s} \bar{D}_{s}^{*}$ threshold.
- Preferred strong decay mode $J / \psi \phi$.

Not observed in $D^{0} \bar{D}^{* 0}$ or $J / \psi \omega$.

Lattice we use

Lattice size	N_{f}	$N_{\text {cfgs }}$	$m_{\pi}[\mathrm{MeV}]$	$a[\mathrm{fm}]$	$L[\mathrm{fm}]$
$16^{3} \times 32$	2	280	$266(3)(3)$	$0.1239(13)$	1.98

Hasenfratz et al. PRD 78, 054511 (2008), PRD 78, 014515 (2008)

- dynamical u, d and valence u, d, s: clover Fermions
- Fermilab treatment for charm quarks.
- m_{s} set using $[M(\phi)]_{\text {lat }}=[M(\phi)]_{\text {exp }}$.
- m_{c} set using $\left[M_{2}\left(\eta_{c}\right)+3 M_{2}(J / \psi)\right]_{l a t}=\left[M_{2}\left(\eta_{c}\right)+3 M_{2}(J / \psi)\right]_{l a t}$.
- "Distilled" quark sources for all flavors.
- Advantages of small lattice extension:

Full distillation, relatively less number of scattering levels.

An X(3872) candidate from lattice

Lee, DeTar, Mohler, Na, arXiv:1411.1389

- Studies with two-meson operators: First hint for a candidate
- Both calculations neglects charm annihilation
- Observed only when both $\bar{c} c$ and $\bar{D}^{*} D$ are used.
- Vastly different systematics, yet results are similar.

Interpolators we use

N	$I=0$	$I=1$
$O_{1-8}^{\bar{\sigma} c}$	$\bar{c} \hat{\Gamma} c$	does not couple
$O_{9}^{M M}$	$D(0) \bar{D}^{*}(0)$	$D(0) \bar{D}^{*}(0)$
$O_{10}^{M M}$	$J / \psi(0) \omega(0)$	$J / \psi(0) \rho(0)$
$O_{11}^{M M}$	$D(1) \bar{D}^{*}(-1)$	$D(1) \bar{D}^{*}(-1)$
$O_{12}^{M M}$	$D(0) \bar{D}^{*}(0)$	$D(0) \bar{D}^{*}(0)$
$O_{13}^{M M}$	$J / \psi(0) \omega(0)$	$J / \psi(0) \rho(0)$
$O_{14}^{M M}$	$J / \psi(1) \omega(-1)$	$J / \psi(1) \rho(-1)$
$O_{15}^{M M}$	$\eta_{c}(1) \sigma(-1)$	$\eta_{c}(1) a_{0}(-1)$
$O_{16}^{M M}$	$\chi_{c 1}(1) \eta(-1)$	$\chi_{c 1}(1) \pi(-1)$
$O_{17}^{M M}$	$\chi_{c 1}(0) \sigma(0)$	$\chi_{c 1}(0) a_{0}(0)$
$O_{18}^{M M}$	$\chi_{c 0}(1) \eta(-1)$	$\chi_{c 0}(1) \pi(-1)$
$O_{19-20}^{4 q}$	$[\bar{c} \bar{q}]_{3_{c}}[c q]_{\overline{3}_{c}}$	$[\bar{c} \bar{u}]_{3_{c}}[c d]_{\overline{3}_{c}}$
$O_{21-22}^{4 q}$	$\left.[\bar{c} \bar{q}]_{\bar{\sigma}_{c}}[c q]\right]_{\sigma_{c}}$	$[\bar{c} \bar{u}]_{\bar{\sigma}_{c}}[c d]_{6_{c}}$

Two meson scattering levels $\lesssim 4.2 \mathrm{GeV}$

- $\quad I=0 ; \bar{c} c(\bar{u} u+\bar{d} d)$ $D(0) \bar{D}^{*}(0), \quad J / \psi(0) \omega(0)$, $D(1) \bar{D}^{*}(-1), J / \psi(1) \omega(-1)$, $\eta_{c}(1) \sigma(-1), \quad \chi_{c 1}(0) \sigma(0)$.
- $\quad I=1 ; \bar{c} c \bar{u} d$
$D(0) \bar{D}^{*}(0), \quad J / \psi(0) \rho(0)$, $D(1) \bar{D}^{*}(-1), J / \psi(1) \rho(-1)$, $\chi_{c 1}(1) \pi(-1), \quad \chi_{c 0}(1) \pi(-1)$.
- $\quad I=0 ; \bar{c} c \bar{s} s$
$D_{s}(0) \bar{D}_{s}^{*}(0), \quad J / \psi(0) \phi(0)$,
$D_{s}(1) \bar{D}_{s}^{*}(-1), J / \psi(1) \phi(-1)$,
- $\bar{c} \hat{\Gamma} c$: as listed in table X of Mohler et al., PRD 87, 034501, arXiv:1208.4059.
- Assumption: Interpolators of $I=0$; $\bar{c} c \bar{s} s$ have negligible coupling with two-meson levels in $I=0 ; \bar{c} c(\bar{u} u+\bar{d} d)$
- charm annihilation not considered : OZI suppression.

$I=0: \bar{c} c(\bar{u} u+\bar{d} d)$

- No significant effects in the low lying spectrum by the inclusion of diquark-antidiquark operators.
- $[\bar{c} \bar{u}]_{\mathcal{G}}[c u]_{\mathcal{G}}$ operators related to two-meson operators by Fierz relations.
- Makes the interpretation as a pure tetraquark unlikely.
- Simulation still unphysical in many ways. Sizable lattice artifacts.
- However, gives a qualitative picture.

X(3872) candidate

- $O_{17}^{M M}: \chi_{c 1}(0) \sigma(0)$
- Without $\bar{c} c$ interpolators, signal doesn't appear.
- Both $\bar{c} c$ combinedly determine the position of the signal for the candidate.
- No significant effects on the levels identified as $J / \psi \omega$ or $\eta_{c}(1) \sigma(-1)$.

X(3872) candidate

Lat. \& Lat. - $O^{4 q}$: This work
[17]: Prelovsek and Leskovec, PRL 111, 192001
[18]: Lee, et al., arXiv:1411.1389

- δ for levels 2 and 5 using Lüscher's formulae :

$$
p \cdot \cot (\delta(p))=\frac{2 Z_{00}\left(1: q^{2}\right)}{\sqrt{\pi} L}
$$

- Phase shift near threshold interpolated using effective range approximation $p \cdot \cot (\delta(p))=\frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}$.
- Large negative scattering length, $a_{0}=-1.7(4) f m$, agrees with a shallow bound state.

Sasaki and Yamazaki, PRD 74, 114507

- Infinite volume bound state position from pole in the resulting scattering matrix.
- No significant effects from $O^{4 q}$.

$I=1: \bar{c} c \bar{u} d$

- All levels identified with various scattering levels.
- No additional candidate observed.
- No charge partner for $X(3872)$ observed.
- Simulation assumes $m_{u}=m_{d}$. Popular interpretations based on isospin breaking. Simulations with $m_{u} \neq m_{d}$ required for confirmation.

$I=0: \bar{c} c \bar{s} s$

- All levels identified with various scattering levels.
- Candidates for $\chi_{c 1}$ and $X(3872)$ observed. No additional candidate observed.
- No effect observed with the inclusion of diquark-antidiquark operators.
- No candidate for $\mathrm{Y}(4140)$ in 1^{++}. $\left(J^{P}\right.$ is not known for $\mathrm{Y}(4140)$)

Fierz relations

Mesons

- $[\bar{c} \bar{q}]_{\overline{\mathcal{G}}}[c q]_{\mathcal{G}}$ and two-meson operators are linearly related.

$$
O^{4 q}(x)=\sum F_{i} M_{1}^{i}(x) M_{2}^{i}(x)
$$

- After appropriate Fierz rearrangement

$$
\begin{aligned}
& O^{4 q}=\left[\begin{array}{lll}
\bar{c} C & C \gamma_{5} & \bar{u}
\end{array}\right]_{\mathcal{G}}\left[c \gamma_{i} C u\right]_{\mathcal{G}}+\left[\begin{array}{lll}
\bar{c} & C \gamma_{i} & \bar{u}
\end{array}\right]_{\mathcal{G}}\left[\begin{array}{ccc}
c & \gamma_{5} C & u
\end{array}\right]_{\mathcal{G}} \\
& =\mp \frac{(-1)^{i}}{2}\left\{\left(\bar{c} \gamma_{5} u\right)\left(\bar{u} \gamma_{i} c\right)-\left(\bar{c} \gamma_{i} u\right)\left(\bar{u} \gamma_{5} c\right)\right. \\
& \left.+\left.\left(\bar{c} \gamma^{\nu} \gamma_{5} u\right)\left(\bar{u} \gamma_{i} \gamma_{\nu} c\right)\right|_{i \neq \nu}-\left.\left(\bar{c} \gamma_{i} \gamma_{\nu} u\right)\left(\bar{u} \gamma^{\nu} \gamma_{5} c\right)\right|_{i \neq \nu}\right\} \\
& +\frac{(-1)^{i}}{2}\left\{(\bar{c} c)\left(\bar{u} \gamma_{i} \gamma_{5} u\right)+\left(\bar{c} \gamma_{i} \gamma_{5} c\right)(\bar{u} u)\right. \\
& \left.-\left.\left(\bar{c} \gamma^{\nu} c\right)\left(\bar{u} \gamma_{i} \gamma_{\nu} \gamma_{5} u\right)\right|_{i \neq \nu}-\left.\left(\bar{c} \sigma^{\alpha \beta} c\right)\left(\bar{u} \sigma_{\alpha \beta} \gamma_{i} \gamma_{5} u\right)\right|_{i \neq(\alpha<\beta)}\right\} \\
& \text { where } \mathcal{G} \text { could be } 3_{c} \text { or } 6_{c} \text {. } \\
& \text { - Any gauge-covariant quark smearing preserves this relation. }
\end{aligned}
$$

Fierz relations

- The time averaged normalized ensemble averaged correlation matrix.

$$
\tilde{\mathcal{C}}_{i j}=\frac{1}{9} \sum_{t=2}^{10} \frac{\overline{\mathcal{C}}_{i j}(t)}{\sqrt{\overline{\mathcal{C}}_{i i}(t) \overline{\mathcal{C}}_{j j}(t)}}
$$

- Strong correlations with two-meson operators and $\bar{c} c$ operators.
- $O_{1-8} \sim \bar{c} c$
$O_{9,11,12} \sim \bar{D}^{*} D$
$O_{10,13-18} \sim H L$
$O_{19-22} \sim[\bar{c} \overline{\bar{c}}]_{\mathcal{G}}[c q]_{\mathcal{G}}$

Conclusions

- A first dynamical study of 1^{++}channel with diquark-antidiquark operators looking for possible exotic candidates has been made.
- Diquark-antidiquark operators are found to have no significant effects on the low lying spectrum.
- A candidate for $X(3872)$ found below the lattice $\bar{D}^{*} D$ non-interacting level. The infinite volume bound state position from an amplitude analysis shows no effect from the diquark-antidiquark operators.
- No additional candidates observed hinting an exotic signal or a charge partner for $\mathrm{X}(3872)$.
- $I=0, \bar{c} c \bar{s} s$: All energy levels identified with various scattering levels. No candidate for $\mathrm{Y}(4140)$ observed.
- Outlook: Better $O^{4 q}$ interpolators to be invented.

Rigorous calculations involving coupled channel effects:
Extraction of coupled channel S-matrix.
Calculations on lattices with better systematics. Simulations with $m_{u} \neq m_{d}$ for isospin breaking effects. छ, ఐac

Level counting : $E_{\text {eff }}$

Compare effective masses to see correspondence between the basis.

Level counting : the overlaps

- Identify the dominant overlaps from $Z_{i}^{n} s$ and ratios of Z_{i}^{n} s.
- Ratio of Z_{i}^{n} s are defined such that the overlap ratio for the state with largest overlap to a given operator is unity.

[^0]
[^0]: X(3872) from Lattice QCD
 M. Padmanath

 University of Graz, Austria. (19 of 19)

