X(3872) and Y(4140) using diquark-antidiquark operators with lattice QCD

M. Padmanath

Institute for Physics, University of Graz, Graz, Austria.

July 16, 2015

- In collaboration with C. B. Lang and Sasa Prelovsek
- PRD XX XXXXXX, arXiv:1503.03257

X(3872) from Lattice QCD

- 日本 - マン・ - マン

Charmonium spectrum to be explored

- Established states
 Predicted, undiscovered
 Neutral XYZ mesons
 Charged XYZ mesons
- Single hadron treatment : reliable for states well below threshold. Levels near and above the open charm thresholds questionable.
- Require rigorous multi-channel calculations considering possibility of strong decay.
- Aim : The importance of tetraquark Fock components in established lattice candidate for X(3872), and search signals for other XYZ with J^{PC} = 1⁺⁺.

S. L. Olsen, arXiv:1411.7738v1 [hep-ex]

XYZs near open flavor threshold

N. Brambilla, et al., arXiv:1404.3723v2

TABLE 10: Quarkonium-like states at the open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

State	M MoV	Γ MoV	1PC	Process (mode)	Experiment (#a)	Voor	Statue
X(3872)	3871.68 ± 0.17	< 1.2	1^{++}	$B \rightarrow K(\pi^+\pi^- J/\psi)$	Belle 810, 1030 (>10), BaBar 1031 (8.6)	2003	Ok
				$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	CDF 1032, 1033 (11.6), D0 1034 (5.2)	2003	Ok
				$pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb [1035, 1036] (np)	2012	Ok
				$B \rightarrow K(\pi^+\pi^-\pi^0 J/\psi)$	Belle [1037] (4.3), BaBar [1038] (4.0)	2005	Ok
				$B \rightarrow K(\gamma J/\psi)$	Belle [1039] (5.5), BaBar [1040] (3.5)	2005	Ok
					LHCb [1041] (> 10)		
				$B \rightarrow K(\gamma \psi(2S))$	BaBar [1040] (3.6), Belle [1039] (0.2)	2008	NC!
					LHCb [1041] (4.4)		
				$B \rightarrow K(DD^*)$	Belle [1042] (6.4), BaBar [1043] (4.9)	2006	Ok
$Z_c(3885)^+$	3883.9 ± 4.5	25 ± 12	1+-	$Y(4260) \to \pi^{-}(DD^{*})^{+}$	BES III [1044] (np)	2013	NC!
$Z_c(3900)^+$	3891.2 ± 3.3	40 ± 8	??-	$Y(4260) \rightarrow \pi^-(\pi^+ J/\psi)$	BES III 1045 (8), Belle 1046 (5.2)	2013	Ok
					T. Xiao et al. [CLEO data] [1047] (>5)		
$Z_c(4020)^+$	4022.9 ± 2.8	7.9 ± 3.7	??-	$Y(4260, 4360) \rightarrow \pi^{-}(\pi^{+}h_{c})$	BES III 1048 (8.9)	2013	NC!
$Z_c(4025)^+$	4026.3 ± 4.5	24.8 ± 9.5	??-	$Y(4260) \rightarrow \pi^{-}(D^{*}\bar{D}^{*})^{+}$	BES III 1049 (10)	2013	NC!
$Z_b(10610)^+$	10607.2 ± 2.0	18.4 ± 2.4	1^{+-}	$\Upsilon(10860) \rightarrow \pi(\pi\Upsilon(1S, 2S, 3S))$	Belle 1050-1052 (>10)	2011	Ok
				$\Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P))$	Belle 1051 (16)	2011	Ok
				$\Upsilon(10860) \rightarrow \pi^- (B\bar{B}^*)^+$	Belle 1053 (8)	2012	NC!
$Z_b(10650)^+$	10652.2 ± 1.5	11.5 ± 2.2	1^{+-}	$\Upsilon(10860) \rightarrow \pi^-(\pi^+\Upsilon(1S, 2S, 3S))$	Belle [1050, 1051] (>10)	2011	Ok
				$\Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P))$	Belle [1051] (16)	2011	Ok
				$\Upsilon(10860) \rightarrow \pi^- (B^* \bar{B}^*)^+$	Belle [1053] (6.8)	2012	NC!

・ロト ・ 同ト ・ ヨト ・ ヨト

≡ ∽९ペ

XYZs above open charm threshold

N. Brambilla, et al., arXiv:1404.3723v2

State	M, MeV	Γ , MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
Y (3915)	3918.4 ± 1.9	20 ± 5	$0/2^{?+}$	$B \rightarrow K(\omega J/\psi)$	Belle 1088 (8), BaBar 1038, 1089 (19)	2004	Ok
				$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	Belle 1090 (7.7), BaBar 1091 (7.6)	2009	Ok
$\chi_{co}(2P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle [1092] (5.3), BaBar [1093] (5.8)	2005	Ok
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi \left(D\bar{D}^*\right)$	Belle [1086, [1087] (6)	2005	NC!
1 (4008)	3891 ± 42	255 ± 42	1	$e \cdot e \rightarrow (\pi \cdot \pi J/\psi)$	Belle [1046] (1.94] (7.4)	2007	NCI
$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \rightarrow (D^{(*)}\bar{D}^{(*)}(\pi))$	PDG [1]	1978	Ok
				ata (pl/a)	Rollo (100E) (6.0)	9019	MC9
$Z(4050)^{+}$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle 1096 (5.0), BaBar 1097 (1.1)	2008	NC!
Y(4140)	4145.8 ± 2.6	18 ± 8	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1098] (5.0), Belle [1099] (1.9),	2009	NC!
					LHCb 1100 (1.4), CMS 1101 (>5)		
					D0 1102 (3.1)		
$\psi(4160)$	4153 ± 3	103 ± 8	1	$e^+e^- \rightarrow (D^{(\bullet)}\overline{D}^{(\bullet)})$	PDG 🗓	1978	Ok
				$e^+e^- \rightarrow (\eta J/\psi)$	Belle [1095] (6.5)	2013	NCI
X(4160)	4156^{+29}_{-98}	139^{+113}_{ce}	??+	$e^+e^- \rightarrow J/\psi (D^*\bar{D}^*)$	Belle [1087] (5.5)	2007	NCI
7(1000)+	1100+35	a n n+99	1+-	$\bar{n}0$, $\nu - (- + \tau) \omega$	D-11- (1100) (7.0)	0014	NO
$Z(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1096] (5.0), BaBar [1097] (2.0)	2008	NC!
Y(4260)	4250 ± 9	108 ± 12	1	$e^+e^- \rightarrow (\pi \pi J/\psi)$	BaBar 1104, 1105 (8), CLEO 1106, 1107 (11)	2005	Ok
					Belle 1046, 1094 (15), BES III 1045 (np)		
				$e^+e^- \rightarrow (f_0(980)J/\psi)$	BaBar [1105] (np), Belle [1046] (np)	2012	Ok
				$e^+e^- \rightarrow (\pi^- Z_c(3900)^+)$	BES III 1045 (8), Belle 1046 (5.2)	2013	Ok
				$e^+e^- \rightarrow (\propto X(3879))$	RES 111 (1108) (5.2)	2013	NCI
Y(4274)	4293 ± 20	35 ± 16	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1098] (3.1), LHCb [1100] (1.0),	2011	NC!
					CMS [1101] (>3), D0 [1102] (np)		
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+10}_{-10}	$0/2^{\gamma+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [1109] (3.2)	2009	NC
X(3872) from Lattice QCD M. Padmanath Iniversity of Graz Austria (4 of 19)							

TABLE 12: Quarkonium-like states above the corresponding open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

Experimental facts : X(3872)

- first observed in Belle 2003 (Belle : PRL 96, 262001.)
- Quantum numbers, $J^{PC} = 1^{++}$
 - : (LHCb : PRL 110, 222001.)
- Appears within 1 MeV below D⁰D
 ^{*0} threshold.

イロト イポト イヨト イヨト

- Preferred strong decay modes $D^0 ar{D}^{*0}$, $J/\psi~\omega$ and $J/\psi~
 ho$
- The isospin still uncertain
 - * nearly equal branching fraction to J/ ψ ω and J/ ψ ρ decays.
 - * No charge partner candidates observed.

Experimental facts : Y(4140)

- first observed in $B^+
 ightarrow {\cal K}^+ \phi J/\psi$ decays (CDF : PRL 102, 242002)
- LHCb did not observe such peaks in these decays. (LHCb : Aaij, et al., PRD 85, 091103).
- CMS confirmed the observation of the peak (Chatrchyan, et al., PLB 734, 261).
- Results from BaBar have much less statistical significance (Lees, et al., 91, 012003).
- Quantum numbers not determined except for C = +.
- Appears \sim 30 MeV above $D_s \bar{D}_s^*$ threshold.
- Preferred strong decay mode $J/\psi \phi$. Not observed in $D^0 \bar{D}^{*0}$ or $J/\psi \omega$.

DQ C

Lattice we use

Lattice size	N _f	$N_{ m cfgs}$	m_{π} [MeV]	<i>a</i> [fm]	<i>L</i> [fm]
$16^3 imes 32$	2	280	266(3)(3)	0.1239(13)	1.98

Hasenfratz et al. PRD 78, 054511 (2008), PRD 78, 014515 (2008)

- dynamical u, d and valence u, d, s : clover Fermions
- Fermilab treatment for charm quarks.
- m_s set using $[M(\phi)]_{lat} = [M(\phi)]_{exp}$.
- m_c set using $[M_2(\eta_c) + 3M_2(J/\psi)]_{lat} = [M_2(\eta_c) + 3M_2(J/\psi)]_{lat}$.
- "Distilled" quark sources for all flavors.
- Advantages of small lattice extension : Full distillation,

relatively less number of scattering levels.

イロト 不得 トイヨト イヨト 一日

DQ C

An X(3872) candidate from lattice

Prelovsek, Leskovec, PRL 111, 192001

Lee, DeTar, Mohler, Na, arXiv:1411.1389

nan

- Studies with two-meson operators : First hint for a candidate
- Both calculations neglects charm annihilation
- Observed only when both $\bar{c}c$ and \bar{D}^*D are used.
- Vastly different systematics, yet results are similar.

X(3872) from Lattice QCD M. Padmanath University of Graz, Austria. (8 of 19)

Interpolators we use

N	<i>I</i> = 0	I = 1
$O_{1-8}^{\overline{c}c}$	īΓ̂c	does not couple
O_9^{MM}	$D(0)\bar{D}^{*}(0)$	$D(0)ar{D}^*(0)$
O_{10}^{MM}	$J/\psi(0)\omega(0)$	$J/\psi(0) ho(0)$
O_{11}^{MM}	$D(1)\bar{D}^{*}(-1)$	$D(1)ar{D}^*(-1)$
O_{12}^{MM}	$D(0)\bar{D}^{*}(0)$	$D(0)\bar{D}^{*}(0)$
0 ^{MM} ₁₃	$J/\psi(0)\omega(0)$	$J/\psi(0) ho(0)$
0 ^{MM} ₁₄	$J/\psi(1)\omega(-1)$	$J/\psi(1) ho(-1)$
O_{15}^{MM}	$\eta_c(1)\sigma(-1)$	$\eta_c(1)a_0(-1)$
O_{16}^{MM}	$\chi_{c1}(1)\eta(-1)$	$\chi_{c1}(1)\pi(-1)$
O_{17}^{MM}	$\chi_{c1}(0)\sigma(0)$	$\chi_{c1}(0)a_0(0)$
O_{18}^{MM}	$\chi_{c0}(1)\eta(-1)$	$\chi_{c0}(1)\pi(-1)$
O_{19-20}^{4q}	$[\bar{c}\bar{q}]_{3_c}[cq]_{\bar{3}_c}$	$[\bar{c}\bar{u}]_{3_c}[cd]_{\bar{3}_c}$
O_{21-22}^{4q}	$[\bar{c}\bar{q}]_{\bar{6}_c}[cq]_{6_c}$	$[\bar{c}\bar{u}]_{\bar{6}_c}[cd]_{6_c}$

Two meson scattering levels \lesssim 4.2 GeV

• $I = 0; \ \bar{c}c(\bar{u}u + \bar{d}d)$ $D(0)\bar{D}^*(0), \ J/\psi(0)\omega(0),$ $D(1)\bar{D}^*(-1), \ J/\psi(1)\omega(-1),$ $\eta_c(1)\sigma(-1), \ \chi_{c1}(0)\sigma(0).$

•
$$I = 1; \bar{c}c\bar{u}d$$

 $D(0)\bar{D}^*(0), J/\psi(0)\rho(0),$
 $D(1)\bar{D}^*(-1), J/\psi(1)\rho(-1),$
 $\chi_{c1}(1)\pi(-1), \chi_{c0}(1)\pi(-1).$

•
$$I = 0; \ \bar{c}c\bar{s}s$$

 $D_s(0)\bar{D}_s^*(0), \ J/\psi(0)\phi(0),$
 $D_s(1)\bar{D}_s^*(-1), \ J/\psi(1)\phi(-1),$

JOC P

- $\bar{c} \hat{\Gamma} c$: as listed in table X of Mohler et al., PRD 87, 034501, arXiv:1208.4059.
- Assumption : Interpolators of *I* = 0; *c̄cs̄s* have negligible coupling with two-meson levels in *I* = 0; *c̄c(ūu* + *d̄d*)
- charm annihilation not considered : OZI suppression.

$I=0: \ \bar{c}c(\bar{u}u+\bar{d}d)$

- No significant effects in the low lying spectrum by the inclusion of diquark-antidiquark operators.
- [c
 ū]_G[cu]_G operators related to two-meson operators by Fierz relations.
- Makes the interpretation as a pure tetraquark unlikely.
- Simulation still unphysical in many ways. Sizable lattice artifacts.
- However, gives a qualitative picture.

X(3872) candidate

•
$$O_{17}^{MM}$$
 : $\chi_{c1}(0)\sigma(0)$

- Without *cc* interpolators, signal doesn't appear.
- Both $\overline{c}c$ combinedly determine the position of the signal for the candidate.
- No significant effects on the levels identified as $J/\psi\omega$ or $\eta_c(1)\sigma(-1)$.

X(3872) candidate

- δ for levels 2 and 5 using Lüscher's formulae : $p.cot(\delta(p)) = \frac{2 Z_{00}(1:q^2)}{\sqrt{\pi L}}$
- Phase shift near threshold interpolated using effective range approximation $p.cot(\delta(p)) = \frac{1}{a_0} + \frac{1}{2}r_0p^2$.
- Large negative scattering length, $a_0 = -1.7(4) fm$, agrees with a shallow bound state.

Sasaki and Yamazaki, PRD 74, 114507

 Infinite volume bound state position from pole in the resulting scattering matrix.

イロト イポト イヨト イヨト

• No significant effects from O^{4q} .

I = 1 : $\bar{c}c\bar{u}d$

- All levels identified with various scattering levels.
- No additional candidate observed.
- No charge partner for X(3872) observed.
- Simulation assumes $m_u = m_d$. Popular interpretations based on isospin breaking. Simulations with $m_u \neq m_d$ required for confirmation.

-

$I = 0 : \bar{c}c\bar{s}s$

- All levels identified with various scattering levels.
- Candidates for χ_{c1} and X(3872) observed. No additional candidate observed.
- No effect observed with the inclusion of diquark-antidiquark operators.
- No candidate for Y(4140) in 1^{++} . (J^P is not known for Y(4140))

-

Fierz relations

• $[\bar{c}\bar{q}]_{\bar{\mathcal{G}}}[cq]_{\mathcal{G}}$ and two-meson operators are linearly related.

$$O^{4q}(x) = \sum F_i M_1^i(x) M_2^i(x)$$

After appropriate Fierz rearrangement

$$\begin{split} O^{4q} &= [\bar{c} \ C \gamma_5 \ \bar{u}] g[c \ \gamma_i C \ u] g + [\bar{c} \ C \gamma_i \ \bar{u}] g[c \ \gamma_5 C \ u] g \\ &= \mp \frac{(-1)^i}{2} \{ \ (\bar{c} \ \gamma_5 \ u) (\bar{u} \ \gamma_i \ c) - \ (\bar{c} \ \gamma_i u) (\bar{u} \ \gamma_5 \ c) \\ &+ (\bar{c} \ \gamma^{\nu} \gamma_5 \ u) (\bar{u} \ \gamma_{i} \gamma_{\nu} \ c) |_{i \neq \nu} - \ (\bar{c} \ \gamma_i \gamma_{\nu} \ u) (\bar{u} \ \gamma^{\nu} \gamma_5 \ c) |_{i \neq \nu} \} \\ &+ \frac{(-1)^i}{2} \{ \ (\bar{c} \ c) (\bar{u} \ \gamma_i \gamma_5 \ u) + \ (\bar{c} \ \gamma_i \gamma_5 \ c) (\bar{u} \ u) \\ &- (\bar{c} \ \gamma^{\nu} c) (\bar{u} \ \gamma_i \gamma_{\nu} \gamma_5 \ u) |_{i \neq \nu} - \ (\bar{c} \ \sigma^{\alpha\beta} \ c) (\bar{u} \ \sigma_{\alpha\beta} \gamma_i \gamma_5 \ u) |_{i \neq (\alpha < \beta)} \} \end{split}$$

<ロト < 同ト < ヨト < ヨト

nac

where \mathcal{G} could be 3_c or 6_c .

1

• Any gauge-covariant quark smearing preserves this relation.

Fierz relations

• The time averaged normalized ensemble averaged correlation matrix.

$$ilde{\mathcal{C}}_{ij} = rac{1}{9}\sum_{t=2}^{10}rac{ar{\mathcal{C}}_{ij}(t)}{\sqrt{ar{\mathcal{C}}_{ii}(t)ar{\mathcal{C}}_{jj}(t)}}$$

• Strong correlations with two-meson operators and $\bar{c}c$ operators.

< ∃ >

DQ P

•
$$O_{1-8} \sim \bar{c}c$$

 $O_{9,11,12} \sim \bar{D}^*D$
 $O_{10,13-18} \sim HL$
 $O_{19-22} \sim [\bar{c}\bar{q}]_{\bar{G}}[cq]_{G}$

Conclusions

- A first dynamical study of 1⁺⁺ channel with diquark-antidiquark operators looking for possible exotic candidates has been made.
- Diquark-antidiquark operators are found to have no significant effects on the low lying spectrum.
- A candidate for X(3872) found below the lattice \overline{D}^*D non-interacting level. The infinite volume bound state position from an amplitude analysis shows no effect from the diquark-antidiquark operators.
- No additional candidates observed hinting an exotic signal or a charge partner for X(3872).
- I = 0, $\bar{c}c\bar{s}s$: All energy levels identified with various scattering levels. No candidate for Y(4140) observed.

 Outlook : Better O^{4q} interpolators to be invented. Rigorous calculations involving coupled channel effects : Extraction of coupled channel S-matrix. Calculations on lattices with better systematics. Simulations with m_u ≠ m_d for isospin breaking effects. = > = ⊃٩<

X(3872) from Lattice QCD M. Padmanath 🛛 🖬 University of Graz, Austria. (17 of 19)

Level counting : *E*_{eff}

Compare effective masses to see correspondence between the basis.

M. Padmanath

🐱 University of Graz, Austria. (18 of 19)

Level counting : the overlaps

- Identify the dominant overlaps from ۲ Z_i^n s and ratios of Z_i^n s.
- Ratio of Z_i^n s are defined such that ۲ the overlap ratio for the state with largest overlap to a given operator is unity.