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Yang–Mills gradient flow (Lüscher 2009–)

Evolution along a fictitious time t ∈ [0,∞),

∂tBµ(t , x) = DνGνµ(t , x) = −g2
0

δSYM

δBµ(t , x)
, Bµ(0, x) = Aµ(x).

where

Dµ = ∂µ + [Bµ, ·], Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ]

Smoothing gauge configuration
Operators are automatically renormalized (Lüscher–Weisz)
Topological charge, scale setting, renormalized coupling, chiral
condensate, . . .
Lattice energy–momentum tensor
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For perturbation theory. . .

“Gauge fixing term” (Lüscher)

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x)

Tree-level propagator

〈BµBν〉0 ∼ 1
(p2)2

[
(δµνp2 − pµpν)e−(t+s)p2

+
1
λ0

pµpνe−α0(t+s)p2
]

and this ensures a good convergence property of momentum
integrals
This term breaks the gauge covariance, but any gauge invariant
quantity (that does not contain ∂/∂t) is independent of α0
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Here, we propose. . .

Background gauge covariant gauge fixing term

∂tBµ(t , x) = DνGνµ(t , x) + α0DµD̂νbν(t , x),

where we split fields into

Bµ(t , x) = B̂µ(t , x)︸ ︷︷ ︸
background

+ bµ(t , x)︸ ︷︷ ︸
quantum

,

and the background covariant derivative

D̂µ = ∂µ + [B̂µ, ·]

This term breaks the full gauge covariance, but preserves
covariance under the background gauge transformation

B̂µ → B̂µ + D̂µω(x), bµ → bµ + [bµ, ω(x)].
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Background field method (’t Hooft, DeWitt, Boulware,
Abbott, Omote–Ichinose, . . . )

Background–quantum splitting

Aµ(x) = Âµ(x)︸ ︷︷ ︸
background

+ aµ(x)︸ ︷︷ ︸
quantum

,

Background covariant gauge fixing term

Sgauge fixing =
λ0

2g2
0

∫
d4x D̂µaa

µ(x)D̂νaa
ν(x),

which preserves covariance under the background gauge
transformation

Âµ(x) → Âµ(x) + D̂µω(x), aµ(x) → aµ(x) + [aµ(x), ω(x)].

Greatly simplifies the consideration of counterterms, for
example. . .
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With our flow equation

Any gauge invariant quantity (that does not contain ∂/∂t) is
independent of α0

Manifestly background gauge covariant expressions. . .
“Tree-level” propagator (in the “Feynman gauge”, λ0 = α0 = 1)〈

ba
µ(t , x)bb

ν (s, y)
〉

0

= g2
0

(
e(t+s)[D̂2

x+2F̂(x)] −1
D̂2

x + 2F̂(x)

)ab

µν

δ(x − y),

where
D̂ab

µ ≡ δab∂µ + Âc
µf acb, F̂ab

µν ≡ F̂ c
µν f acb

We have assumed that the background field is evolved by its own flow equation

∂t B̂µ(t , x) = D̂νĜνµ(t , x), B̂µ(0, x) = Âµ(x),

and, moreover D̂ν F̂νµ(x) = 0 for simplicity.
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Small flow time expansion relevant to EMT

Small flow time expansion (Lüscher–Weisz)

Ga
µρ(t , x)Ga

νρ(t , x)

t→0∼
〈
Ga

µρ(t , x)Ga
νρ(t , x)

〉
+ ζ11(t)F a

µρ(x)F a
νρ(x) + ζ12(t)δµνF a

ρσ(x)F a
ρσ(x) + O(t),

EMT can then be expressed as (H.S., Del Debbio–Patella–Rago)

{Tµν}R = lim
t→0

{
c1(t)

[
Ga

µρGa
νρ −

1
4
δµνGa

ρσGa
ρσ

]
+ c2(t)

[
δµνGa

ρσGa
ρσ −

〈
δµνGa

ρσGa
ρσ

〉]}
,

Tested for the bulk thermodynamics of quenched QCD
(Asakawa–Hatsuda–Itou–Kitazawa–H.S.)
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Background covariant expression

Conventional approach requires cumbersome calculation of 12
diagrams

Here, all the information (propagators, vertices) are summarized
in (∆̂ ≡ D̂2 + 2F̂):〈

Ga
µρ(t , x)Ga

νρ(t , x)
∣∣
O(b2)

− F a
µρ(x)F a

νρ(x)
∣∣
O(a2)

〉
1PI

= 2g2
0

∫ t

0
dξ

[
(δµαδνδδβγ − δµαδνγδβδ − δµβδνδδαγ + δµβδνγδαδ)

× D̂ab
α

(
e2ξ∆̂

)bc

βγ
D̂ca

δ

+ F̂ab
µρ(x)

(
e2ξ∆̂

)ba

ρν
+ F̂ab

νρ (x)
(

e2ξ∆̂
)ba

ρµ

]
δ(x − y)|y=x .
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Background covariant expression

. . . and the expansion for t → 0 is straightforward and quick (labor
∼ 1/10)〈

Ga
µρ(t , x)Ga

νρ(t , x)
∣∣
O(b2)

− F a
µρ(x)F a

νρ(x)
∣∣
O(a2)

〉
1PI

t→0∼
g2

0
(4π)2

[
11
3

ε(t)−1 +
7
3

]
tr

[
F̂(x)2

]
µν

+
g2

0
(4π)2

[
−11

12
ε(t)−1 − 1

6

]
δµν tr

[
F̂(x)2

]
ρρ

+ O(t),

where
ε(t)−1 ≡ 1

ε
+ ln(8πt).

Actually, the present calculational scheme revealed that I made
mistakes in the past diagrammatic calculation. . . (already identified
and fixed)
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Summary

Background gauge covariant gauge fixing in the gradient flow

Calculational scheme with manifest background gauge covariance
Quick one-loop calculation of the small flow time expansion
relevant to EMT
Also for the topological charge density,

εµνρσGa
µν(t , x)Ga

ρσ(t , x)
t→0∼

(
1 + 0 · g2

0

)
εµνρσF a

µν(x)F a
ρσ(x) + O(t).

Fermion flow can be included
Simpler proof of the renormalizability (than Lüscher–Weisz)?
Two-loop calculation of the small flow time expansion?
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