# Light nuclei and nucleon form factors in $N_f = 2 + 1$ lattice QCD



for PACS Collaboration

Lattice 2015 @ Kobe International Conference Center, July 14-18 2015

#### 1. Light nuclei

in collaboration with

K.-I. Ishikawa, Y. Kuramashi, and A. Ukawa for PACS Collaboration

Refs: PRD81:111504(R)(2010); PRD84:054506(2011); PRD86:074514(2012) PRD92:014501(2015)

#### 2. Nucleon form factors

in collaboration with K.-I. Ishikawa, Y. Kuramashi, S. Sasaki and A. Ukawa for PACS Collaboration

## Outline

- Introduction
- Simulation parameters
- Results of light nuclei
  - <sup>4</sup>He and <sup>3</sup>He channels
  - NN channels
- $\bullet$  Very preliminary result at  $m_\pi \sim 0.145~{\rm GeV}$ 
  - Light nuclei binding energy
  - nucleon form factors
- Summary and future work

Introduction

Binding force  $\begin{cases} \text{protons and neutrons} \rightarrow \text{nuclei} \\ \text{quarks and gluons} \rightarrow \text{protons and neutrons} \end{cases}$ 

both from fundamental strong interaction of quark and gluon well known, but hard to prove

Spectrum of proton and neutron (nucleons) success of non-perturbative calculation of QCD degrees of freedom of quarks and gluons [Talk(Tue): N. Ukita]

quarks and gluons  $\rightarrow$  protons and neutrons  $\rightarrow$  nuclei

goal: quantitatively understand property of nuclei from QCD

So far not many studies for multi-baryon bound states  $\rightarrow$  Can we reproduce known binding energy in light nuclei?

# Introduction

Binding force  $\begin{cases} \text{protons and neutrons} \rightarrow \text{nuclei} \\ \text{quarks and gluons} \rightarrow \text{protons and neutrons} \end{cases}$ 

both from fundamental strong interaction of quark and gluon well known, but hard to prove

Spectrum of proton and neutron (nucleons) success of non-perturbative calculation of QCD degrees of freedom of quarks and gluons [Talk(Tue): N. Ukita]

2nd motivation: Nucleon form factors not well understood

quarks and gluons  $\rightarrow$  protons and neutrons  $\rightarrow$  nuclei

goal: quantitatively understand property of nuclei from QCD

#### Multi-baryon bound state from lattice QCD

Extend our exploratory  $N_f = 0$  study to  $N_f = 2 + 1$  calculation

1. <sup>4</sup>He and <sup>3</sup>He

'10 PACS-CS  $N_f = 0$   $m_{\pi} = 0.8$  GeV PRD81:111504(R)(2010) '12 HALQCD  $N_f = 3$   $m_{\pi} = 0.47$  GeV,  $m_{\pi} > 1$  GeV <sup>4</sup>He '12 NPLQCD  $N_f = 3$   $m_{\pi} = 0.81$  GeV '12 TY et al.  $N_f = 2 + 1$   $m_{\pi} = 0.51$  GeV PRD86:074514(2012) '15 TY et al.  $N_f = 2 + 1$   $m_{\pi} = 0.30$  GeV PRD92:014501(2015)

2. H dibaryon in  $\Lambda\Lambda$  channel (S=-2, I=0)

'11, '12 NPLQCD  $N_f = 2 + 1 \ m_{\pi} = 0.39$  GeV,  $N_f = 3 \ m_{\pi} = 0.81$  GeV

'11, '12 HALQCD  $N_f = 3 \ m_\pi = 0.47 - 1.02 \ \text{GeV}$ 

'11 Luo et al.  $N_f=0$   $m_{\pi}=0.5$ –1.3 GeV

#### 3. NN

'11 PACS-CS  $N_f = 0$   $m_{\pi} = 0.8$  GeV PRD84:054506(2011) '12 NPLQCD  $N_f = 2 + 1$   $m_{\pi} = 0.39$  GeV (Possibility) '12 NPLQCD  $N_f = 3$   $m_{\pi} = 0.81$  GeV '12 TY et al.  $N_f = 2 + 1$   $m_{\pi} = 0.51$  GeV PRD86:074514(2012) '15 TY et al.  $N_f = 2 + 1$   $m_{\pi} = 0.30$  GeV PRD92:014501(2015) Other states:  $\Xi\Xi$ , '12 NPLQCD; spin-2  $N\Omega$ , <sup>16</sup>O and <sup>40</sup>Ca, '14 HALQCD

## Calculation method of multi-nucleon bound state

Traditional method for example <sup>4</sup>He channel  
$$\langle 0|O_{4}_{He}(t)O_{4}^{\dagger}_{He}(0)|0\rangle = \sum_{n} \langle 0|O_{4}_{He}|n\rangle \langle n|O_{4}^{\dagger}_{He}|0\rangle e^{-E_{n}t} \xrightarrow{t \gg 1} A_{0} e^{-E_{0}t}$$

Difficulties for multi-nucleon calculation

1. Statistical error Statistical error  $\propto \exp\left(N_N\left[m_N - \frac{3}{2}m_\pi\right]t\right)$ 

#### 2. Calculation cost

Wick contraction for <sup>4</sup>He = 
$$p^2n^2 = (udu)^2(dud)^2$$
: 518400  
proton =  $p = (udu)$ : 2

#### 3. Identification of bound state on finite volume

Finite volume effect of attractive scattering state

$$\Delta E_L = E_0 - N_N m_N = O(L^{-3}) < 0 \leftrightarrow \text{binding energy}$$

## Calculation method of multi-nucleon bound state

Traditional method for example <sup>4</sup>He channel  
$$\langle 0|O_{4}_{He}(t)O_{4}^{\dagger}_{He}(0)|0\rangle = \sum_{n} \langle 0|O_{4}_{He}|n\rangle \langle n|O_{4}^{\dagger}_{He}|0\rangle e^{-E_{n}t} \xrightarrow[t\gg1]{} A_{0} e^{-E_{0}t}$$

Difficulties for multi-nucleon calculation

1. Statistical error Statistical error  $\propto \exp\left(N_N\left[m_N - \frac{3}{2}m_\pi\right]t\right)$ 

→ heavy quark m<sub>π</sub> = 0.8-0.3 GeV + large # of measurements
2. Calculation cost PACS-CS PRD81:111504(R)(2010)
Wick contraction for <sup>4</sup>He = p<sup>2</sup>n<sup>2</sup> = (udu)<sup>2</sup>(dud)<sup>2</sup>: 518400 → 1107
→ reduction using p(n) ↔ p(n) p ↔ n, u(d) ↔ u(d) in p(n)
+ block of 3 quark props(parallel) and contraction(workstation)
Multi-baryon: '12 Doi and Endres; Detmold and Orginos; '13 Günther et al.
3. Identification of bound state on finite volume

attractive scattering state  $\Delta E_L = E_0 - N_N m_N = O(L^{-3}) < 0$ 

'86,'91 Lüscher, '07 Beane et al.

 $\rightarrow$  Volume dependence of  $\Delta E_L \rightarrow \Delta E_\infty \neq 0 \rightarrow$  bound state

Spectral weight: '04 Mathur et al., Anti-PBC '05 Ishii et al.

# Simulation parameters

 $N_f = 2 + 1 \text{ QCD}$ 

Iwasaki gauge action at  $\beta = 1.90$ 

 $a^{-1} = 2.194$  GeV with  $m_{\Omega} = 1.6725$  GeV '10 PACS-CS

non-perturbative O(a)-improved Wilson fermion action

 $m_{\pi} = 0.30 \text{ GeV}$  and  $m_N = 1.05 \text{ GeV}$  PRD92:014501(2015)

 $m_s \sim$  physical strange quark mass



Computational resources

PACS-CS, T2K-Tsukuba, HA-PACS, COMA at Univ. of Tsukuba

T2K-Tokyo and FX10 at Univ. of Tokyo, and K at AICS

# Results at $m_{\pi} = 0.3 \text{ GeV}$

Results of  $\Delta E_L = E_0 - N_N m_N$ <sup>4</sup>He and <sup>3</sup>He channels at  $m_\pi = 0.3$  GeV on L = 5.8 fm



- Larger error in <sup>4</sup>He channel
- Statistical error under control in t < 12
- Negative  $\Delta E_L$  in both channels

<sup>4</sup>He and <sup>3</sup>He channels  $\Delta E_L = E_0 - N_N m_N$  at  $m_\pi = 0.3$  GeV TY *et al.*, PRD92:014501(2015)



•  $\Delta E_L < 0$  and mild volume dependence, though large systematic error from choice of fit range

• Infinite volume extrapolation with constant fit Both ground states are bound states.

$$\Delta E_{4}_{He} = 47(7)\binom{+20}{-11}$$
 MeV  $\Delta E_{3}_{He} = 21.7(1.2)\binom{+13}{-1.6}$  MeV



## Comparison of <sup>4</sup>He and <sup>3</sup>He channels

 $L^3 \rightarrow \infty$  results only

Light nuclei likely formed in 0.3 GeV  $\leq m_{\pi} \leq$  0.8 GeV Same order of  $\Delta E$  to experiments



## Comparison of <sup>4</sup>He and <sup>3</sup>He channels

 $L^3 \rightarrow \infty$  results only

Light nuclei likely formed in 0.3 GeV  $\leq m_{\pi} \leq$  0.8 GeV Same order of  $\Delta E$  to experiments  $\rightarrow$  relatively easier than NNlarge  $|\Delta E|$  makes less V dependence at physical  $m_{\pi}$ 

touchstone of quantitative understanding of nuclei from lattice QCD Investigations of  $m_{\pi}$  dependence  $\rightarrow m_{\pi} \sim 0.145$  GeV on  $L \sim 8$  fm

NN (<sup>3</sup>S<sub>1</sub> and <sup>1</sup>S<sub>0</sub>) channels  $\Delta E_L = E_0 - 2m_N$  at  $m_\pi = 0.3$  GeV TY *et al.*, PRD92:014501(2015)



- Negative  $\Delta E_L$
- Infinite volume extrapolation of  $\Delta E_L$  with constant Finite volume effect in two-particle system '04 Beane *et al.*, '06 Sasaki & TY

$$\Delta E_L = -\frac{\gamma^2}{m_N} \left\{ 1 + \frac{C_{\gamma}}{\gamma L} \sum_{|\vec{n}| \neq 0} \frac{\exp(-\gamma L \sqrt{\vec{n}^2})}{\sqrt{\vec{n}^2}} \right\}, \ \Delta E_{\text{bind}} = \frac{\gamma^2}{m_N}$$

based on Lüscher's finite volume formula

NN ( ${}^{3}S_{1}$  and  ${}^{1}S_{0}$ ) channels  $\Delta E_{L} = E_{0} - 2m_{N}$  at  $m_{\pi} = 0.3$  GeV TY *et al.*, PRD92:014501(2015)



Bound state in both channels  $\leftarrow$  different from experiment  $\Delta E_{^{3}S_{1}} = 14.5(0.7)\binom{+2.4}{-0.8}$  MeV  $\Delta E_{^{1}S_{0}} = 8.5(0.7)\binom{+1.6}{-0.5}$  MeV

10-a



inconsistent with experiment due to larger  $m_{\pi}(?)$ 

Investigation of  $m_\pi$  dependence  $ightarrow m_\pi \sim$  0.145 GeV on  $L \sim$  8 fm



Large finite volume effect expected even on  $L \sim 8$  fm

'86 Lüscher, '04 Beane et al., '14 Briceño et al.



gray data: single volume calculation

Investigations of  $m_\pi$  dependence  $\rightarrow m_\pi \sim 0.145$  GeV on  $L \sim 8$  fm

Large finite volume effect expected even on  $L\sim 8~{
m fm}$ 

<sup>3</sup>S<sub>1</sub>: 
$$\Delta E_{\text{exp}} = 2.2 \text{ MeV}$$
  
 $\Delta E_L = -(\Delta E_{\text{exp}} + \mathcal{O}(\exp(-L\sqrt{m_N\Delta E_{\text{exp}}}))) \lesssim -4 \text{ MeV}$   
<sup>1</sup>S<sub>0</sub>:  $a_0^{\text{exp}} = 23.7 \text{ fm}$   
 $\Delta E_L = -\frac{4\pi a_0^{\text{exp}}}{m_N L^3} + \mathcal{O}(1/L^4) \lesssim -2 \text{ MeV}$ 



Computational resources

HA-PACS, COMA @Univ. of Tsukuba, K @AICS, FX100 @RIKEN

## Nucleon form factors at almost physical $m_{\pi}$

in collaboration with

K.-I. Ishikawa, Y. Kuramashi, S. Sasaki, and A. Ukawa for PACS Collaboration

Computational resources

COMA @Univ. of Tsukuba, FX10 @Univ. of Tokyo,

K @AICS, FX100 @RIKEN, System E @Kyoto Univ.

## Example of large quark mass dependence near $m_{\pi} \rightarrow 0$ Isovector radii from form factors $F_1$ and $F_2$



important for understanding of nucleus property Can we reproduce experiment at physical  $m_{\pi}$ ?

c.f.) '15 Capitani et al.,'15 ETM

### Isovector electric and magnetic Sachs form factors Very preliminary results at $m_{\pi} \sim 0.145$ GeV on $L \sim 8$ fm



Need much more statistics but encouraging signal in  $G_E$ 



roughly consistent with experiment,

but need much more statistics for stringent test

# Summary

 $N_f = 2 + 1$  lattice QCD at  $m_\pi = 0.5$  and 0.3 GeV

• Volume dependence of  $\Delta E$ 

 $\Delta E \neq 0$  of 0th state in infinite volume limit  $\rightarrow$  bound state in <sup>4</sup>He, <sup>3</sup>He, <sup>3</sup>S<sub>1</sub> and <sup>1</sup>S<sub>0</sub> at  $m_{\pi} = 0.5$  and 0.3 GeV

- $\Delta E$  larger than experiment and small  $m_{\pi}$  dependence
- Bound state in  ${}^{1}S_{0}$  not observed in experiment Deep bound state in  $N_{f} = 3$  at  $m_{\pi} = 0.8$  GeV ('12 NPLQCD)
- No bound state in HALQCD method

#### Need further investigations

e.g. systematic error from large  $m_{\pi}$  and finite lattice spacing  $N_f = 2 + 1 \ m_{\pi} \sim 0.14$  GeV on  $L \sim 8$  fm  $\Delta E$  for nuclei and Isovector form factors of nucleon