(2+1)-flavor QCD Thermodynamics from the Gradient Flow

Etsuko Itou (KEK, Japan)

collaboration with

H.Suzuki (Kyushu U.), Y.Taniguchi (Tsukuba U.), T.Umeda (Hiroshima U.) based on FlowQCD and Whot QCD joint-collaboration

references:

Asakawa, Hatsuda, E.I., Kitazawa, Suzuki (FlowQCD coll.) Phys.Rev. D90 (2014) 1, 011501 work in progress

Energy-momentum tensor on the lattice

Luescher and Weisz, JHEP 1102, 051 (2011)

Firstly, we obtain the relation between them perturbatively. Assume that it applies to the nonperturbative regime.

`Suzuki method" for quenched QCD

Suzuki, PTEP 2013, no8, 083B03

relation....dim.=4 op on the lattice vs. renormalized EMT

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[\{T_{\mu\nu}\}_R(x) - \frac{1}{4} \delta_{\mu\nu} \{T_{\rho\rho}\}_R(x) \right] + O(t),$$

$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) \{T_{\rho\rho}\}_R(x) + O(t),$$

coefficient...given by renormalized coupling and coeff. of beta fn.

$$\alpha_U(t)(g;\mu) = g^2 \left\{ 1 + 2b_0 \left[\ln(\sqrt{8t}\mu) + s_1 \right] g^2 + O(g^4) \right\},\$$

$$\alpha_E(t)(g;\mu) = \frac{1}{2b_0} \left\{ 1 + 2b_0 s_2 g^2 + O(g^4) \right\},\$$

 b_0 l-loop coeff. of beta fn. MSbar scheme

 $s_1 = 0.03296...$ $s_2 = 0.19783...$

`Suzuki method" for quenched QCD

Suzuki, PTEP 2013, no8, 083B03

relation....dim.=4 op on the lattice vs. renormalized EMT

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[\{T_{\mu\nu}\}_R(x) - \frac{1}{4} \delta_{\mu\nu} \{T_{\rho\rho}\}_R(x) \right] + O(t),$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) \{T_{\rho\rho}\}_R(x) + O(t),$$

coefficient...given by renormalized coupling and coeff. of beta fn.

$$\alpha_U(t)(g;\mu) = g^2 \left\{ 1 + 2b_0 \left[\ln(\sqrt{8t}\mu) + s_1 \right] g^2 + O(g^4) \right\},\$$

$$\alpha_E(t)(g;\mu) = \frac{1}{2b_0} \left\{ 1 + 2b_0 s_2 g^2 + O(g^4) \right\},\$$

 b_0 l-loop coeff. of beta fn. MSbar scheme

 $s_1 = -0.0863575$ $s_2 = 0.05578512$

How to get EMT for quenched QCD

Generate gauge configuration at t=0 (usual process)

Step 2

Solve the Wilson flow eq. and generate the gauge configuration at flow time (t) $\sqrt{2t} + \sqrt{2t} = 1$

$$a \ll \sqrt{8t} \ll \Lambda_{QCD}^{-1}$$
 or T^{-1}

Step 3

Measure two dim=4 ops. using flowed gauge configuration

Step 4
$$U_{\mu\nu}(t,x), E(t,x)$$

Take the continuum limit. Then take t->0 limit. (Take care the feasible window of flow time)

$$T^R_{\mu\nu}(x) = \lim_{t \to 0} \left\{ \frac{1}{\alpha_U(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} [E(t,x) - \langle E(t,x) \rangle_0] \right\}$$

One-point fn. of EMT in finite temperature QCD

Asakawa, Hatsuda, E.I., Kitazawa, Suzuki (FlowQCD coll.) Phys.Rev. D90 (2014) 1, 011501

Simulation setup

- Wilson plaquette gauge action
- Iattice size (Ns=32, Nt=6,8,10,32)
- # of confs. is 100 300
- simulation parameters

N_{τ}	6	8	10	T/T_c
	6.20	6.40	6.56	1.65
β	6.02	6.20	6.36	1.24
	5.89	6.06	6.20	0.99

Temperature is determined by Boyd et. al. NPB469,419 (1996)

Parametrization is given by alpha collaboration NPB538,669 (1999)

flow time dependence (T=1.65Tc)

feasible flow time

longer than lattice cutoff avoid an over-smeared regime

 $2a < \sqrt{8t} < N_\tau a/2$

show a plateau

 (small higher dimensional op.)
 Practically, no need t-> 0 limit

 **finer lattice simulation shows a slope

 M.Kitazawa's talk on Wed.

 systematic error coming from scale setting is dominated in entropy density

each dark color shows statistical error each light color includes systematic error

Comparison with the results given by integration method

Boyd et. al. NPB469,419 (1996)

Okamoto et. al. (CP-PACS) PRD60, 094510 (1999)

Borsanyi et. al. JHEP 1207, 056 (2012)

(2+1)flavor QCD

How to get EMT for guenched QCD

Step 1

Generate gauge configuration at t=0 (usual process)

Step 2

Solve the Wilson flow eq. and generate the gauge configuration at flow time (t)

$$a \ll \sqrt{8t} \ll \Lambda_{QCD}^{-1}$$
 or T^{-1}

Step 3

Measure two dim=4 ops. using flowed gauge configuration

$$U_{\mu\nu}(t,x), E(t,x)$$

Step 4

Take the continuum limit. Then take t->0 limit. (Take care the feasible flow time window)

$$T^R_{\mu\nu}(x) = \lim_{t \to 0} \left\{ \frac{1}{\alpha_U(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} [E(t,x) - \langle E(t,x) \rangle_0] \right\}$$

How to get EMT for full QCD

Generate gauge configuration at t=0 (usual process)

With fermion

M.Luescher, JHEP 04 (2013) 123

Solve the Wilson flow eq. and generate the gauge configuration at flow time (t) $a \ll \sqrt{8t} \ll \Lambda_{OCD}^{-1}$ or T^{-1} With fermion flow

Step 3

Step 2

Measure two dim=4 ops. using flowed gauge configuration

$U_{\mu\nu}(t,x), E(t,x)$ Add operators with fermion

Step 4

H.Makino and H.Suzuki, PTEP 2014 (2014) 6, 063B02

Take the continuum limit. Then take t->0 limit. (Take care the feasible flow time window)

Fermion flow

M.Luescher, JHEP 04 (2013) 123

Gauge flow $\partial_t V_t = Z(V_t)V_t$,

 $W_{3} = \exp\{\frac{3}{4}Z_{2} - \frac{8}{9}Z_{1} + \frac{17}{36}Z_{0}\}W_{2},$ Runge-Kutta step $W_{2} = \exp\{\frac{8}{9}Z_{1} - \frac{17}{36}Z_{0}\}W_{1},$ $W_{1} = \exp\{\frac{1}{4}Z_{0}\}W_{0},$ $W_{0} = V_{t},$ Fermion (adjoint) flow $\partial_t \chi_t = \Delta(V_t) \chi_t$,

initial cond. $\xi_t^{\epsilon}(x) = \eta(x),$ $\lambda_3 = \xi_{s+\epsilon}^{\epsilon},$

Runge-Kutta step
$$\begin{split} \lambda_3 &= \xi_{s+\epsilon}^{\epsilon}, \\ \lambda_2 &= \frac{3}{4} \Delta_2 \lambda_3, \\ \lambda_1 &= \lambda_3 + \frac{8}{9} \Delta_1 \lambda_2, \\ \lambda_0 &= \lambda_1 + \lambda_2 + \frac{1}{4} \Delta_0 (\lambda_1 - \frac{8}{9} \lambda_2) \end{split}$$

initial cond. $V|_{t=0} = U$

operators with fermion

H.Makino and H.Suzuki, PTEP 2014 (2014) 6, 063B02

$$\begin{aligned} \{T_{\mu\nu}\}_{R}(x) &= c_{1}(t) \left[\tilde{\mathcal{O}}_{1\mu\nu}(t,x) - \frac{1}{4} \tilde{\mathcal{O}}_{2\mu\nu}(t,x) \right] \\ &+ c_{2}(t) \left[\tilde{\mathcal{O}}_{2\mu\nu}(t,x) - \left\langle \tilde{\mathcal{O}}_{2\mu\nu}(t,x) \right\rangle \right] \\ &+ c_{3}(t) \left[\tilde{\mathcal{O}}_{3\mu\nu}(t,x) - 2\tilde{\mathcal{O}}_{4\mu\nu}(t,x) - \left\langle \tilde{\mathcal{O}}_{3\mu\nu}(t,x) - 2\tilde{\mathcal{O}}_{4\mu\nu}(t,x) \right\rangle \right] \\ &+ c_{4}(t) \left[\tilde{\mathcal{O}}_{4\mu\nu}(t,x) - \left\langle \tilde{\mathcal{O}}_{4\mu\nu}(t,x) \right\rangle \right] \\ &+ c_{5}(t) \left[\tilde{\mathcal{O}}_{5\mu\nu}(t,x) - \left\langle \tilde{\mathcal{O}}_{5\mu\nu}(t,x) \right\rangle \right] + O(t), \end{aligned}$$

$$\begin{split} \mathcal{O}_{3\mu\nu}(x) &\equiv \bar{\psi}(x) \left(\gamma_{\mu} \overleftrightarrow{D}_{\nu} + \gamma_{\nu} \overleftrightarrow{D}_{\mu} \right) \psi(x), \\ \mathcal{O}_{4\mu\nu}(x) &\equiv \delta_{\mu\nu} \bar{\psi}(x) \overleftrightarrow{D} \psi(x), \\ \mathcal{O}_{5\mu\nu}(x) &\equiv \delta_{\mu\nu} m_0 \bar{\psi}(x) \psi(x). \end{split}$$

essentially summarize $t_{\mu\nu}^{r}(t) \equiv \frac{1}{N_{\Gamma}} \sum_{x} \left\langle \bar{\chi}_{r}(t,x) \gamma_{\mu} \left(D_{\nu} - \overleftarrow{D}_{\nu} \right) \chi_{r}(t,x) \right\rangle,$ $s^{r}(t) \equiv \frac{1}{N_{\Gamma}} \sum_{x} \left\langle \bar{\chi}_{r}(t,x) \chi_{r}(t,x) \right\rangle,$

Lattice setup

- Iwasaki gauge action + improved Wilson fermion
- Iattice size (Ns=32, Nt=8)
- m_ps/m_v=0.6337(38) for u,d quarks
- m_ps/m_v=0.7377(28) for s quark
- each configuration is separated by 100 MC trj.

Parametrization is given by

T.Umeda et.al. for WHOT-QCD coll., Phys.Rev.D85,094508(2012)

preliminary results T=280MeV

Nt=8, beta=1.9728, c_sw=1.66922, kappa_ud=0.136147, kappa_s=0.135417

$$s^{r}(t) \equiv \frac{1}{N_{\Gamma}} \sum_{x} \left\langle \bar{\chi}_{r}(t,x) \chi_{r}(t,x) \right\rangle$$

signal is very clear

preliminary results T=280MeV

Nt=8, beta=1.9728, c_sw=1.66922, kappa_ud=0.136147, kappa_s=0.135417

- Novel method to obtain EMT using the lattice simulation
- igstarrow quenched results show that the small flow time expansion is promising
- \blacklozenge clear statistical signal, small systematic error
- full QCD simulation is also doable!!

- combine 5 ops. for full QCD results (need Z-factor for fermion op.)
- precise parametrization is necessary
- \blacklozenge two-point function of EMT (shear and bulk viscosity, heat capacity)
- application to conformal field theory (central charge, dilation physics)

backup

Continuum extrapolation

What is YM gradient flow?

Properties and application

Luescher, (Lattice2013)

- Novel definition of topological charge
- Scale setting (t0, w0)
- Novel renormalized coupling
- UV finiteness (No need wave fn. renormalization for bosonic composite op.)
- Novel calculation of chiral condensate

UV finiteness of the gradient flow

Flow eq. (continuum)

 $\partial_t B_\mu(t,x) = D_\nu G_{\nu\mu}(t,x)$ initial condition $B_\mu(t=0,x) = A_\mu(x)$

leading order solution in perturbation $B_{\mu}(t,x) = \int d^{D}y K_{t}(x-y) A_{\mu}(y)$ $K_{t}(z) = \int \frac{d^{D}p}{(2\pi)^{D}} e^{ipz} e^{-tp^{2}}$

 $p^2>1/t~$ modes are suppressed by a smooth UVcutoff $|x|<\sqrt{8t}~$ is smeared

All order finiteness is proven using the extended space-time method Luescher and Weisz, JHEP 1102, 051(2011)