Complex Langevin simulation in condensed matter physics

Arata Yamamoto (University of Tokyo)

with Tomoya Hayata (RIKEN)

Complex Langevin Method

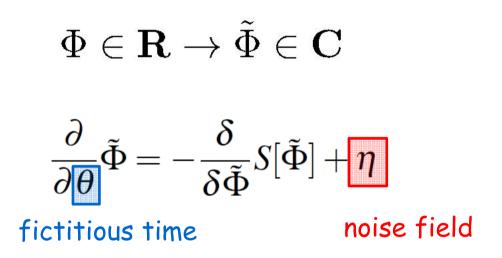
Euclidean path integral:

$$Z = \int D\Phi \ e^{-S[\Phi]}$$

$$S[\Phi] \neq S^*[\Phi] \longrightarrow$$
 "sign problem"

ex) chemical potential, electric field, theta term, real time, matrix model, non-relativistic system, spin system Complex Langevin Method

complex Langevin equation:



expectation value:

$$\langle \hat{O}[\tilde{\Phi}] \rangle = \lim_{\theta \to \infty} \langle \hat{O}[\tilde{\Phi}(\theta)] \rangle_{\eta}$$

Complex Langevin Method

complex Langevin simulations of

Bose system & Fermi system

in condensed matter physics

- $\checkmark\,$ for the ab-initio analysis of condensed matter systems
- \checkmark for a test of the complex Langevin method

non-relativistic Bose gas:

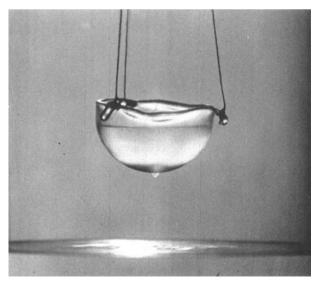
$$S_0[\Phi_1, \Phi_2] = \int d\tau d^3x \left[\Phi^*(x) \left(\frac{\partial}{\partial \tau} - \mu - \frac{1}{2m} \Delta \right) \Phi(x) + \frac{1}{4} \lambda |\Phi(x)|^4 \right]$$

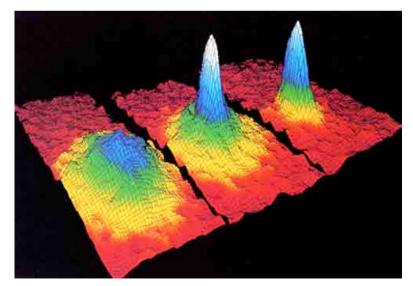
anti-Hermitian

superfluid ⁴He

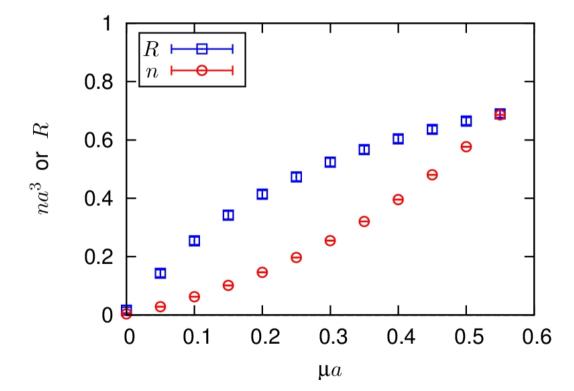
from wikipedia

JILA group experiment

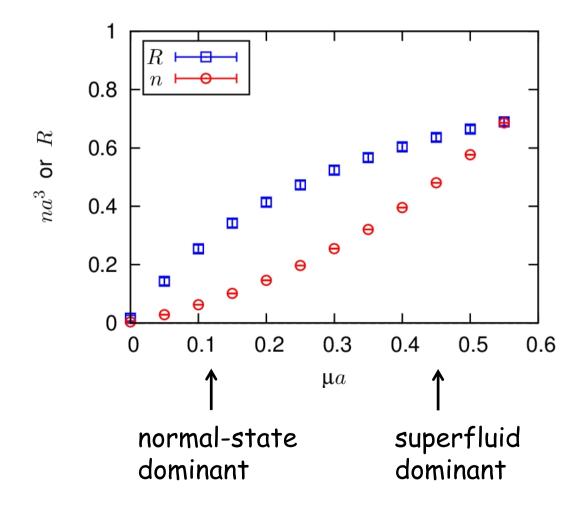




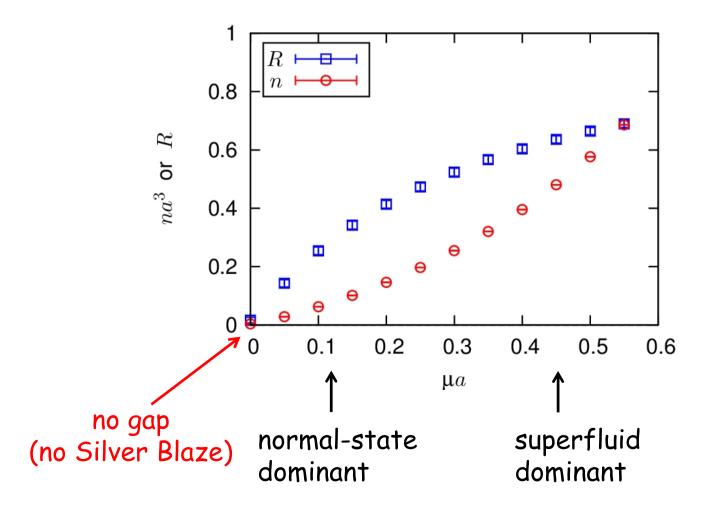
condensate fraction:
$$R = \lim_{|x-y| \to \infty} \frac{\langle \Phi^*(x) \Phi(y) \rangle}{\langle \Phi^*(x) \Phi(x) \rangle}$$



condensate fraction:
$$R = \lim_{|x-y| \to \infty} \frac{\langle \Phi^*(x) \Phi(y) \rangle}{\langle \Phi^*(x) \Phi(x) \rangle}$$



condensate fraction:
$$R = \lim_{|x-y| \to \infty} \frac{\langle \Phi^*(x) \Phi(y) \rangle}{\langle \Phi^*(x) \Phi(x) \rangle}$$



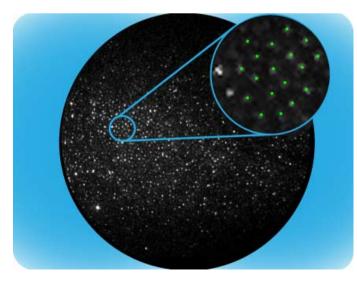
Rotation

rotating Bose gas:

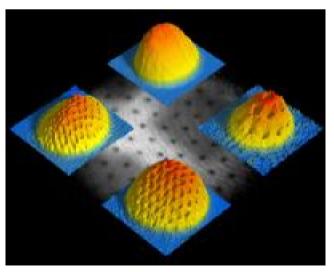
$$S_{\Omega} = S_0 - \Omega L_z$$

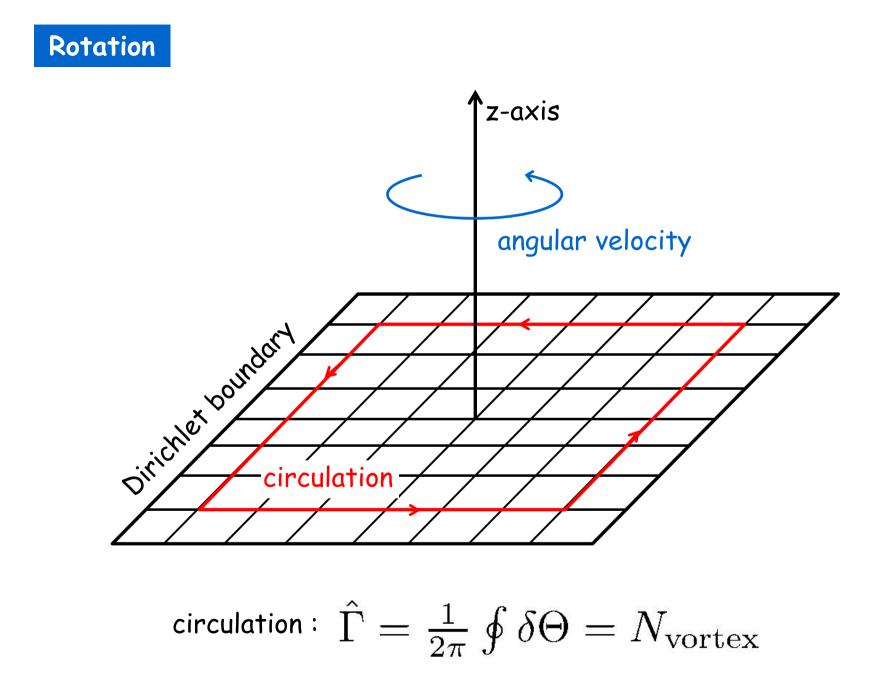
$$L_z = -i \int d\tau d^3 x \, \Phi^*(x) \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \Phi(x)$$

vortex in ⁴He Maryland group experiment

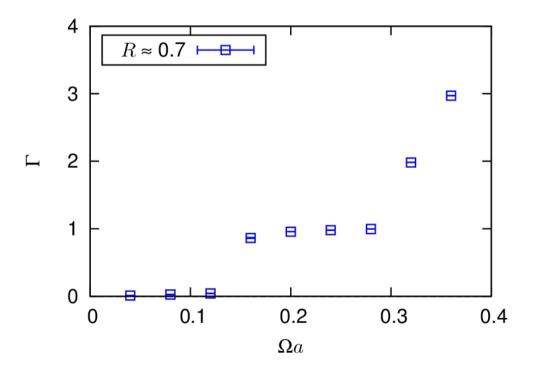


vortex in atomic BEC MIT group experiment

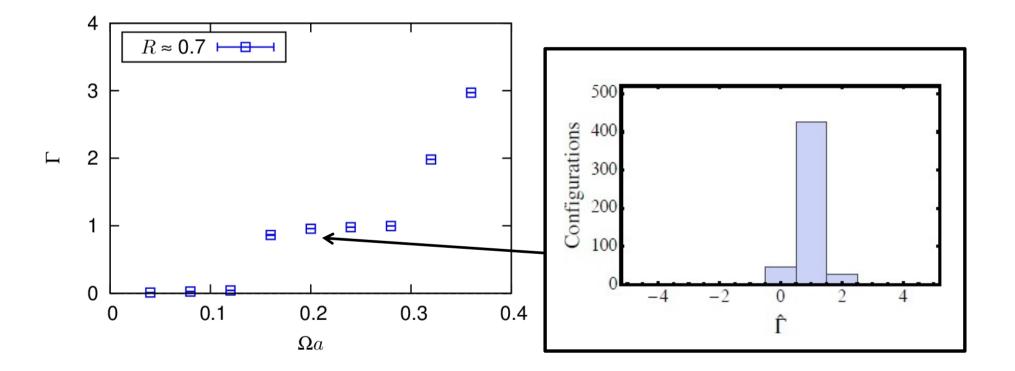




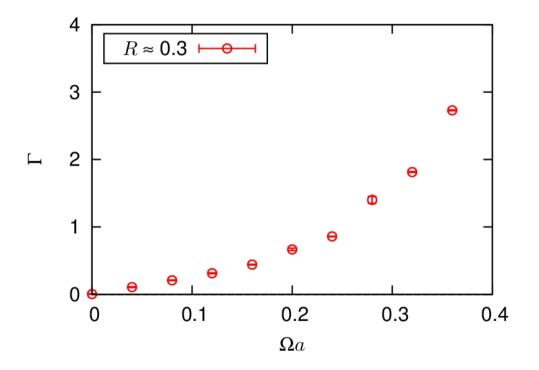
circulation (superfluid dominant)



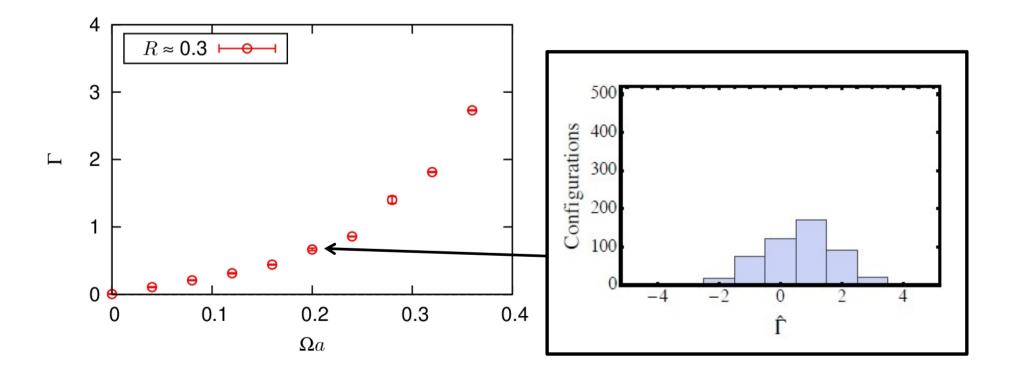
circulation (superfluid dominant)



circulation (normal-state dominant)



circulation (normal-state dominant)

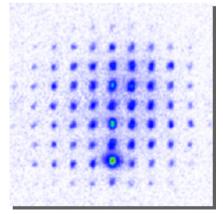


Fermi System

Hubbard model:

$$\begin{split} S[\Psi_{\uparrow}^*,\Psi_{\uparrow},\Psi_{\downarrow}^*,\Psi_{\downarrow}] &= \int d\tau \sum_{x} \left[\sum_{i=\uparrow,\downarrow} \Psi_i^*(x) \left(\frac{\partial}{\partial \tau} - \mu_i \right) \Psi_i(x) \right. \\ &- \sum_{i=\uparrow,\downarrow} \sum_{j} t_i \left(\Psi_i^*(x) \Psi_i(x+\hat{j}) + \Psi_i^*(x+\hat{j}) \Psi_i(x) \right) \\ &+ U \Psi_{\uparrow}^*(x) \Psi_{\uparrow}(x) \Psi_{\downarrow}(x) \Psi_{\downarrow}(x) \right] \end{split}$$

optical lattice of atom gas LMU-MPQ group experiment



high-Tc superconductor from wikipedia

Fermi System

Hubbard model:

$$Z = \int D\Phi \, \det K_{\uparrow}[\Phi] \det K_{\downarrow}[\Phi] e^{-S_A[\Phi]}$$

$$K_i[\Phi] = \frac{\partial}{\partial \tau} - \mu_i + \Phi(x) - \sum_j t_i (T_{+j} + T_{-j})$$

$$S_A[\Phi] = \int d\tau \sum_x \frac{1}{2|U|} \Phi^2(x)$$

$$\det K[t,\mu] \in \mathbf{R}$$

balanced:

$${\rm det} K[t,\mu] {\rm det} K[t,\mu] \geq 0 \qquad \qquad {\rm no \ problem}$$

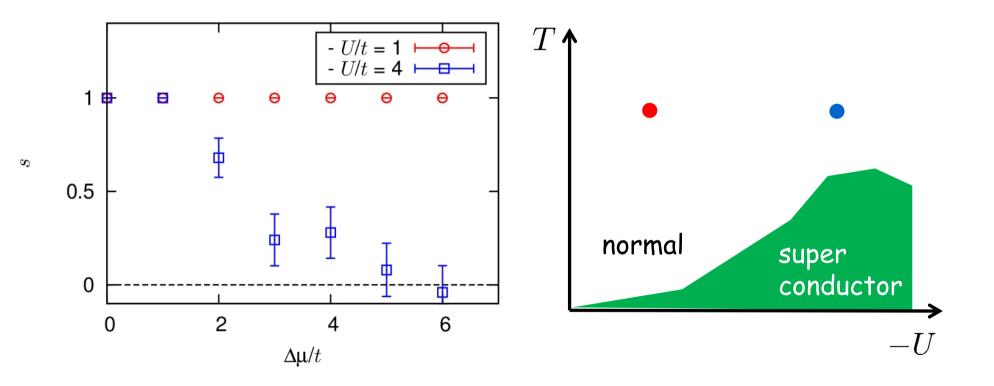
imbalanced:

$${
m det} K[t_{\uparrow},\mu_{\uparrow}] {
m det} K[t_{\downarrow},\mu_{\downarrow}] \gtrless 0$$
 sign problem

cf) QCD

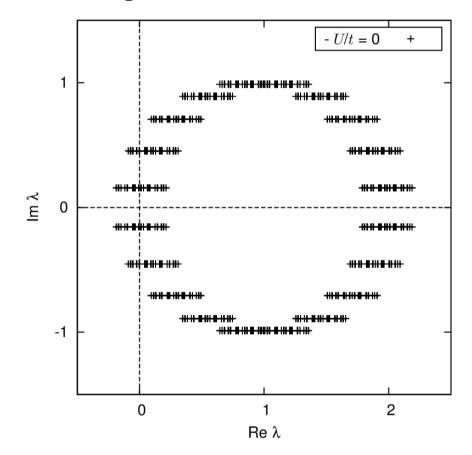
 ${\rm det} D[m,\mu] {\rm det} D[m,\mu] \in {\bf C} \qquad {\rm sign \ problem}$

average sign in "sign-quenched" Monte Carlo



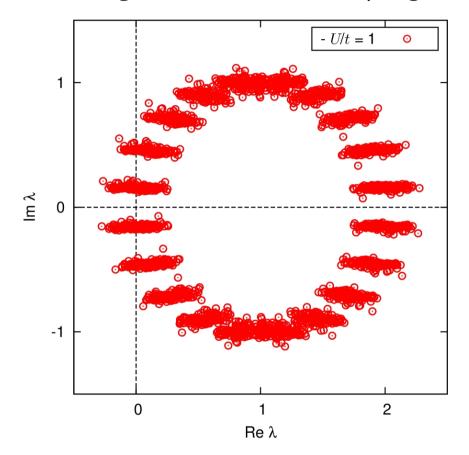
Fermi System

eigenvalues (free)

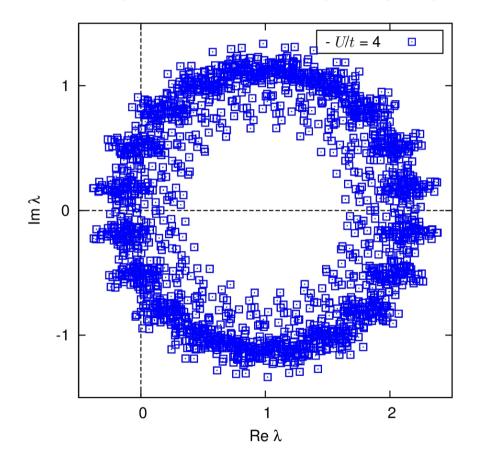


Fermi System

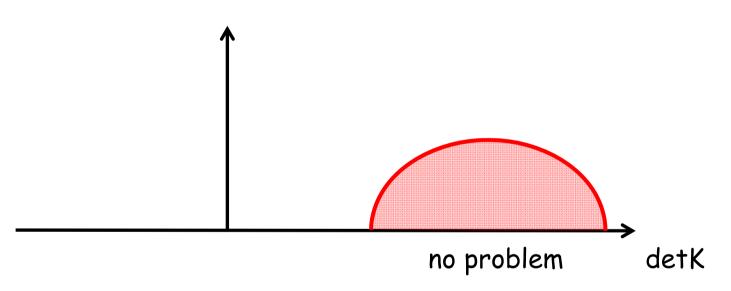
eigenvalues (weak coupling)

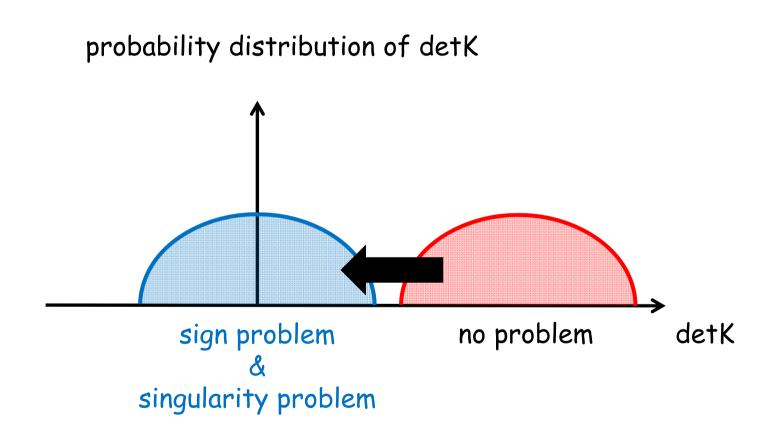


eigenvalues (strong coupling)



logarithmic singularity at zero eigenvalues Mollgaard Splittorff '13, Greensite '14, Nishimura Shimasaki '15





Boson is good. Fermion is bad.