Neutron-Antineutron Oscillation Matrix Elements with DW Fermions at the Physical Point

Sergey Syritsyn (Brookhaven Natl. Lab) with Michael Buchoff (University of Washington), Chris Schroeder, Joe Wasem (Lawrence Livermore Natl. Lab)

LATTICE 2015, July 14-18, Kobe, Japan

Outline

- Introduction

Motivation for neutron-antineutron transition searches
Experimental status

- Initial Lattice Results

Lattice methodology for n-nbar operators
Calculations at the physical point

- Renormalization

Isospin symmetry

- Summary \& Outlook

Motivation

- Baryon number violation ($\Delta B=2$)

One of Sakharov's conditions for baryogenesis

- Nuclear matter stability

Decay of nuclei through (nn)-annihilation

Probing BSM physics, $\Delta(B-L)$
Connection to lepton number violation and
seesaw neutrino mass mechanism?
[R.Mohapatra, R.Marshak (1980)]

Alternative to proton decay ($\Delta B=1$)
Which one (or both?) realized in nature?
neutron/antineutron oscillation through $\Delta B=1$ is suppressed

Basics of $\mathrm{n} \leftrightarrow \overline{\mathrm{n}}$ Oscillations

$\mathcal{L}_{n \bar{n}}$ is a vacuum operator and preserves spin $\Rightarrow 2$-state system

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{osc}}=\left(\begin{array}{cc}
M_{n}+\frac{1}{2} \Delta M & \delta m \\
\delta m & M_{n}-\frac{1}{2} \Delta M
\end{array}\right) \\
& \text { where } \delta m=\langle\bar{n}| \mathcal{L}_{n \bar{n}}|n\rangle
\end{aligned}
$$

$$
\Delta M=\text { induced by magnetic field or nuclear media }
$$

Oscillation probability:

$$
\left.P_{n \rightarrow \bar{n}}(t)=\left|\langle\bar{n}| e^{-i \mathcal{H}_{\text {osc }} t}\right| n\right\rangle\left.\right|^{2}=\left[\frac{(\delta m)^{2}}{(\Delta M / 2)^{2}+(\delta m)^{2}}\right] \sin ^{2}\left[\frac{1}{2} \Delta E t\right]
$$

Current bound $\tau_{n \bar{n}} \gtrsim 10^{8} s \quad \Longleftrightarrow \delta m \lesssim 6 \cdot 10^{-24} \mathrm{eV}$
Earth magnetic field $=0.5$ Gauss: $\quad \Delta M=2 \mu_{n} B_{\oplus} \approx 6 \cdot 10^{-12} \mathrm{eV}$

$$
\Delta E=\sqrt{(\Delta M)^{2}+(2 \delta m)^{2}} \approx \Delta M \gg \delta m
$$

Quasifree condition $(\Delta E \cdot t<1)$ for $\mathrm{t}=1 \mathrm{sec}$:

$$
B<\left(2 \mu_{n} t\right)^{-1}=5 \mathrm{nT}=10^{-4} B_{\oplus}
$$

Searches for $n \rightarrow \bar{n}$

Stability of a nucleus w.r.t ($n n$) annihilation
${ }^{56} \mathrm{Fe}$ [Soudan 2] $T_{d}\left({ }^{56} \mathrm{Fe}\right)>0.72 \cdot 10^{32} \mathrm{yr} \longrightarrow \tau_{n \bar{n}}>1.4 \cdot 10^{8} \mathrm{~s}$
${ }^{16} \mathrm{O}$ [Super-K] $T_{d}\left({ }^{16} \mathrm{O}\right)>1.77 \cdot 10^{32} \mathrm{yr} \longrightarrow \tau_{n \bar{n}}>3.3 \cdot 10^{8} \mathrm{~s}$
${ }^{2} \mathrm{H}$ [SNO] $\quad T_{d}\left({ }^{2} H\right)>0.54 \cdot 10^{32} \mathrm{yr} \longrightarrow \tau_{n \bar{n}}>1.96 \cdot 10^{8} \mathrm{~s}$

Sensitivity is limited by atmospheric neutrinos

Quasifree neutrons ($\Delta E t \ll 1$) in vacuum:
ILL Grenoble high-flux reactor, 1990 [M.Baldo-Ceolin et al, 1994)]

$$
\tau_{n \bar{n}}>0.86 \cdot 10^{8} \mathrm{sec}
$$

 matter stability bound $\approx 10^{35} \mathrm{yr}$

Neutron \leftrightarrow Antineutron Operators

Effective 6-quark operators From Beyond (the Standard Model) :
interaction with a massive Majorana lepton, unified theories, etc
[T.K.Kuo, S.T.Love, PRL45:93 (1980)]
[R.N.Mohapatra, R.E.Marshak, PRL44:1316 (1980)]

$$
\begin{array}{ll}
\mathcal{H}_{n \bar{n}}=\left(\begin{array}{cc}
E+V & \delta m \\
\delta m & E-V
\end{array}\right) & \tau_{n \bar{n}}=(2 \delta m)^{-1} \\
\mathcal{L}_{\text {eff }}=\sum_{i}\left[c_{i} \mathcal{O}_{i}^{6 q}+\text { h.c. }\right] & \left.\delta m=-\langle\bar{n}| \int d^{4} x \mathcal{L}_{\text {eff }}|n\rangle=-\sum_{i} c_{i}\left\langle\langle\bar{n}| \mathcal{O}_{i}^{6 \mathrm{q}} \mid n\right\rangle\right\rangle
\end{array}
$$

Dimension-9 point-like operators suppressed by $\left(M_{X}\right)^{-5}$
What would be the scale for new physics behind $n \leftrightarrow n^{-}$?
Current limit on τ_{n-n} requires $M_{x} \approx$ few $\cdot 10^{2} \mathrm{TeV}$
Sensitivity of matter to BN -violating terms is determined by nuclear scale physics and non-perturbative QCD

Neutron \leftrightarrow Antineutron Matrix Elements

Operators: pseudoscalar singlets w.r.t $S U(3)_{\mathrm{c}} \otimes U(1)_{\mathrm{em}}\left[\otimes S U(2)_{L}\right]$
$\mathcal{O}_{1 \chi_{1}\left\{\chi_{2} \chi_{3}\right\}}=T_{i j k l m n}^{s}\left[u_{\chi_{1}}^{i T} \mathcal{C} u_{\chi_{1}}^{j}\right]\left[{ }_{\chi_{2}}^{k T} \mathcal{C} d_{\chi_{2}}^{l}\right]\left[d_{\chi_{3}}^{m T} \mathcal{C} d_{\chi_{3}}^{n}\right]$
$\chi_{1,2,3}=R, L$

$\mathcal{O}_{2\left\{\chi_{1} \chi_{2}\right\} \chi_{3}}=T_{i j k l m n}^{s}\left[u_{\chi_{1}}^{i T} \mathcal{C} d_{\chi_{1}}^{j}\right]\left[u_{\chi_{2}}^{k T} \mathcal{C} d_{\chi_{2}}^{l}\right]\left[d_{\chi_{3}}^{m T} \mathcal{C} d_{\chi_{3}}^{n}\right]$
$\mathcal{O}_{3\left\{\chi_{1} \chi_{2}\right\} \chi_{3}}=T_{i j k l m n}^{a}\left[u_{\chi_{1}}^{i T} \mathcal{C} d_{\chi_{1}}^{j}\right]\left[u_{\chi_{2}}^{k T} \mathcal{C} d_{\chi_{2}}^{l}\right]\left[d_{\chi_{3}}^{m T} \mathcal{C} d_{\chi_{3}}^{n}\right]$

Computed using MIT bag model

[T.Kuo, S.Love, PRL45:93 (1980)]
[S.Rao, R.Shrock, PLB116:238 (1982)]
Chiral $\operatorname{SU}(2)_{L, R}$ multiplet classification:
$\left.\begin{array}{l|l|c|c}{\left[(R R R)_{\mathbf{3}}\right]} & \mathcal{O}_{R(R R)}^{1}+4 \mathcal{O}_{(R R) R}^{2} & \mathbf{3}_{R} \otimes \mathbf{0}_{L} & \left(\alpha_{S} / 4 \pi\right)(-12) \\ \hline\left[(R R R)_{\mathbf{1}}\right] & \mathcal{O}_{(R R) R}^{(}-\mathcal{O}_{R(R R)}^{1} \equiv 3 \mathcal{O}_{(R R) R}^{3} & \mathbf{1}_{R} \otimes \mathbf{0}_{L} & \left(\alpha_{S} / 4 \pi\right)(-2) \\ {\left[R_{\mathbf{1}}(L L)_{\mathbf{2}}\right]} & \mathcal{O}_{(L L) R}^{2}-\mathcal{O}_{L(L R)}^{1} \equiv 3 \mathcal{O}_{(L L) R}^{3} & \mathbf{1}_{R} \otimes \mathbf{0}_{L} & 0 \\ {\left[(R R)_{\mathbf{1}} L_{\mathbf{0}}\right]} & 3 \mathcal{O}_{(L R) R}^{3} & \mathbf{1}_{R} \otimes \mathbf{0}_{L} & \left(\alpha_{S} / 4 \pi\right)(+2)\end{array}\right\}$ sU(2)L×U(1) -symmetric

Chiral symmetry is essential for simple renormalization

Lattice Calculation

$$
\begin{gathered}
\left\langle N_{\uparrow}^{(+)}\left(t_{2}\right) \mathcal{O}^{6 \mathrm{q}}(0) N_{\downarrow}^{(-)}\left(-t_{1}\right)\right\rangle \underset{t_{1}, t_{2}, t_{1}+t_{2} \rightarrow \infty}{\sim} e^{-M_{n}\left(t_{2}+t_{1}\right)}\left\langle n_{\uparrow}\right| \mathcal{O}^{6 \mathrm{q}}\left|\bar{n}_{\uparrow}\right\rangle \\
\hline
\end{gathered}
$$

No quark-disconnected contractions!
Single propagator $\longrightarrow \quad \forall t_{1}, t_{2}$
Initial calculation with anisotropic Wilson in [M.Buchoff, C.Schroeder, J.Wasem, arXiv:1207.3832 (LATTICE2012)]

$$
\begin{aligned}
\left.\langle n| \mathcal{O}|\bar{n}\rangle\right|_{\text {lat }}= & \langle n| \mathcal{O}|\bar{n}\rangle \\
& +O\left(e^{-\Delta E_{\text {exc }} t_{1}}, e^{-\Delta E_{\text {exc }} t_{2}}, e^{-\Delta E_{\text {exc }}\left(t_{1}+t_{2}\right)}\right)
\end{aligned}
$$

Complete set of correlators for sophisticated exc.state analysis:

- Exponential fits
- Variational (GPoF)

Preliminary Results

Physical pions $m_{\pi}=140 \mathrm{MeV}$[RBC and UKQCD collaborations, arXiv:1411.7017]
\uparrow lattice $48^{3} \times 96=5.5^{3} \times 10.9 \mathrm{fm}$
\uparrow lattice spacing $a=0.123 \mathrm{fm}, a^{-1}=(1.730(4)) \mathrm{GeV} ; \delta\left(a^{-6}\right) \approx 1.4 \%$

- chiral (Möbius Domain Wall Fermions)
$\checkmark \quad 28 \times 81$ samples (AMA)

PRELIMINARY ANALYSIS:

\downarrow simplified analysis of exc.states

$$
\langle n| \mathcal{O}|\bar{n}\rangle \sim \frac{C_{n \mathcal{O} \bar{n}}\left(t_{2}, 0,-t_{1}\right)}{\sqrt{C_{n n}\left(t_{2}, 0\right) C_{\bar{n} \bar{n}}\left(0,-t_{1}\right)}}
$$

Effective Mass: Gauging Excited States

Lattice Matrix Elements

scaled $\times 10^{6}$, kinematics factors not divided out Separation T=10 : ~10\% stat.errorbars, consistent with T=12

Renormalization : RI-(S)MOM on a lattice

$$
\left(G_{I}\right)_{\alpha \beta \gamma \delta \epsilon \eta}^{i j k l m n}\left(x, p_{1} \ldots p_{6}\right)=\left\langle\mathcal{O}_{I} \bar{d}_{\eta}^{n}\left(p_{6}\right) \bar{d}_{\epsilon}^{m}\left(p_{5}\right) \bar{d}_{\delta}^{l}\left(p_{4}\right) \bar{d}_{\gamma}^{k}\left(p_{3}\right) \bar{u}_{\beta}^{j}\left(p_{2}\right) \bar{u}_{\alpha}^{i}\left(p_{1}\right)\right\rangle
$$

$$
\begin{aligned}
& p_{1}=p_{3}=p_{5}=p \\
& p_{2}=p_{4}=p_{6}=-p
\end{aligned}
$$

Ext.momenta assigned to match the 2-loop pert.QCD calculation [M.Buchoff, M.Wagman, arXiv:1506.00647]

Contractions : loop over $\left(N_{s} N_{c}\right)^{6}$, for each $\left(N_{s} N_{c}\right)^{6}$ elements, every site (with vol.sources)

- use Fouirer-transf. propagators $\mathrm{x}_{0} \longrightarrow \mathrm{p}_{\mathrm{i}}$ for all p_{i} (reuse RHQBBar data, 20*81 samples)
- fermion symmetry: antisymmetrize propagators ($u_{p} \otimes u_{-p}$), ($d_{p} \otimes d_{-p}$) before contractions

Use 4d diagonal $p=(k, k, k, k),(a \cdot k)<\pi / 2$ to minimize discretization errors at higher scale

Restoring Chiral Isomultiplets

"Scale-independent" Ren.factors

Perturbative 1-loop running from
W.Caswell et al PLB122:373 (1983)]

Take variances between $2-4 \mathrm{GeV}$ and $4-6 \mathrm{GeV}$ fits as estimates of syst.errors

Preliminary Results in MSbar(2GeV)

DO NOT QUOTE PRELIMINARY DO NOT QUOTE PRELIMINARY DO NOT QU

	$Z(\mathrm{lat} \rightarrow \overline{M S})$	$\mathcal{O}^{\overline{M S}(2 \mathrm{GeV})}$	Bag "A"	$\frac{\mathrm{LQCD}}{\text { Bag "A" }}$	Bag "B"	$\frac{\mathrm{LQCD}}{\text { Bag "B" }}$
$\left[(R R R)_{\mathbf{3}}\right]$	$0.62(12)$	0	0	-	0	-
$\left[(R R R)_{\mathbf{1}}\right]$	$0.454(33)$	$45.4(5.6)$	8.190	5.5	6.660	6.8
$\left[R(R L)_{\mathbf{0}}\right]$	$0.435(26)$	$44.0(4.1)$	7.230	6.1	6.090	7.2
$\left[(R R)_{\mathbf{1}} L_{\mathbf{0}}\right]$	$0.396(31)$	$-66.6(7.7)$	-9.540	7.0	-8.160	8.1
$\left[(R R)_{\mathbf{2}} L_{\mathbf{1}}\right]^{(1)}$	$0.537(52)$	$-2.12(26)$	1.260	-1.7	-0.666	3.2
$\left[(R R)_{\mathbf{2}} L_{\mathbf{1}}\right]^{(2)}$	$0.537(52)$	$0.531(64)$	-0.314	-1.7	0.167	3.2
$\left[(R R)_{\mathbf{2}} L_{\mathbf{1}}\right]^{(3)}$	$0.537(52)$	$-1.06(13)$	0.630	-1.7	-0.330	3.2

- matrix elements : $\mathrm{T}=10$ plateau average
- renormalization: only syst.errors, estimated from variation over entire range
- MIT Bag model results from [S.Rao, R.Shrock, PLB116:238 (1982)]

Summary \& Outlook

Clear lattice signal for non-zero $\langle n| \mathcal{O}^{6 \mathrm{q}}|\bar{n}\rangle$ even with modest statistics
Physical $m_{\pi}=140 \mathrm{MeV}$ pion mass lattices with chiral symmetry
Comparison with the MIT Bag Model
Current stat\&sys. errors already not exceed $\sim 15 \%$
Reduction of model dependence of n-nbar oscillations phenomenology

Outlook

- Study and improve control of syst.errors in renormalization

Alternative momentum arrangement?
Step-scaling?
Two-loop perturbative running and matching?

- Improve analysis to extract ground state M.E.

Easy to analyze excited state effects with chosen schemeStudy discretization effects with another (finer) lattice spacing

BACKUP

Neutron Oscillations and Baryogenesis

Baryosynthesis requires B - or $L-$ violation :

- leptotenesis: ΔL above $T_{E W}$, transformed to ΔB by sphalerons
- (if exist) $n-\bar{n}$ oscillations can wash away ΔB during EW transition
- then, $n \leftrightarrow \bar{n}$ must explain post-sphaleron baryogenesis below $T_{E W}$ upper limit on $\tau_{n-n}<5 \cdot 10^{10} \sec$ (proton-decay already excluded)

Interplay of $T_{E W}$ and ΔB scales

Neutron Oscillation and Neutrino See-Saw

($) n$ - \bar{n} oscillation $\Delta B=2$ breaks $(B-L)$: beyond-SM physics
Similarly, $\Delta L=2$ from Majorana neutrino masses in the see-saw mechanism: is there connection between the two?
[Mohapatra, Marshak, PRL44:1316 (1980)]
Quark-lepton unification theory

$$
S U(2)_{R} \otimes S U(2)_{L} \otimes\left[U(1)_{(B-L)} \otimes S U(3)_{C}\right]_{\left(\text {remnants of } S U\left(4^{\prime}\right)\right)}
$$

with Majorana ν_{R} predicts

$$
\begin{aligned}
& \Delta L=2 \\
& \Delta B=2
\end{aligned}
$$

Spontaneous breaking

$S U(2)_{R} \otimes U(1)_{(B-L)} \rightarrow U(1)_{Y} \quad\left\langle\Delta_{R, 44}\right\rangle=v \neq 0$
with Higgs field

Searches for $n \rightarrow \bar{n}$: Proposed Improvements

[Phillips et al, arXiv:1410.1100]

(1) Free-neutron oscillation (similar to ILL):

Maximize Prob $\sim N_{n}{ }^{*}\left(t_{\text {tree }}\right)^{2}$
\downarrow Neutrons from spallation sources:

e.g. European Spallation source: x12 neutron flux
\checkmark Elliptic mirror for slow neutrons (reflect $\sim 70 \%$ of $v_{\perp} \leqslant 40 \mathrm{~m} / \mathrm{s}$ neutrons)
\checkmark Better mag.field screening ($B<1 n T$) and longer flight time

Expected to increase sens. $x \mathbf{1 0}^{2}-10^{3} \mathrm{LLL}, \tau_{n-n} \geqslant 10^{9}-10^{10} \mathrm{~s}$, matter stability bound $\approx 10^{35} \mathrm{yr}$Other proposed experiments:

- stored ultra-cold neutrons ($4-5 \mathrm{~m} / \mathrm{s}$)
- vertical cold neutron beams

