Neutron-Antineutron Oscillation Matrix Elements with DW Fermions at the Physical Point

Sergey Syritsyn (Brookhaven Natl. Lab)

with Michael Buchoff (University of Washington), Chris Schroeder, Joe Wasem (Lawrence Livermore Natl. Lab)

LATTICE 2015, July 14-18, Kobe, Japan

University of California Lawrence Livermore National Laboratory

Outline

Introduction

Motivation for neutron-antineutron transition searches Experimental status

Initial Lattice Results

Lattice methodology for n-nbar operators Calculations at the physical point

Renormalization Isospin symmetry

Summary & Outlook

Motivation

Baryon number violation ($\Delta B=2$)

One of Sakharov's conditions for baryogenesis

Nuclear matter stability Decay of nuclei through (nn)-annihilation

Probing BSM physics, $\Delta(B-L)$

Connection to lepton number violation and seesaw neutrino mass mechanism? [R.Mohapatra, R.Marshak (1980)]

Alternative to proton decay ($\Delta B=1$) Which one (or both?) realized in nature? neutron/antineutron oscillation through $\Delta B=1$ is suppressed

LATTICE 2015, July 14-18, Kobe, Japan

Basics of n \leftrightarrow **n Oscillations**

Oscillation probability:

$$P_{n \to \bar{n}}(t) = \left| \langle \bar{n} | e^{-i\mathcal{H}_{\text{osc}}t} | n \rangle \right|^2 = \left[\frac{(\delta m)^2}{(\Delta M/2)^2 + (\delta m)^2} \right] \sin^2 \left[\frac{1}{2} \Delta E t \right]$$

Current bound $\tau_{n\bar{n}} \gtrsim 10^8 s \iff \delta m \lesssim 6 \cdot 10^{-24} \text{ eV}$ Earth magnetic field =0.5 Gauss: $\Delta M = 2\mu_n B_{\oplus} \approx 6 \cdot 10^{-12} \text{ eV}$

$$\Delta E = \sqrt{(\Delta M)^2 + (2\delta m)^2} \approx \Delta M \gg \delta m$$

Quasifree condition ($\Delta E \cdot t < 1$) for t=1sec:

$$B < (2\mu_n t)^{-1} = 5 \text{ nT} = 10^{-4} B_{\oplus}$$

Searches for $n \to \bar{n}$

 Stability of a nucleus w.r.t (nn) annihilation

 ${}^{56}Fe$ [Soudan 2] $T_d({}^{56}Fe) > 0.72 \cdot 10^{32} \text{ yr} \longrightarrow \tau_{n\bar{n}} > 1.4 \cdot 10^8 \text{ s}$
 ${}^{16}O$ [Super-K] $T_d({}^{16}O) > 1.77 \cdot 10^{32} \text{ yr} \longrightarrow \tau_{n\bar{n}} > 3.3 \cdot 10^8 \text{ s}$
 ${}^{2}H$ [SNO] $T_d({}^{2}H) > 0.54 \cdot 10^{32} \text{ yr} \longrightarrow \tau_{n\bar{n}} > 1.96 \cdot 10^8 \text{ s}$

Sensitivity is limited by atmospheric neutrinos

Quasifree neutrons ($\Delta Et <<1$) in vacuum:

ILL Grenoble high-flux reactor, 1990 [M.Baldo-Ceolin et al, 1994)]

H53 Neutron Beam Target Divergent Neutron Guide B < 10 nT L/v ~ 0.1 s T ~ 1 year

 $\tau_{n\bar{n}} > 0.86 \cdot 10^8 sec$

Prospects to increase sensitivity to $10^2 - 10^3$ x ILL, $\tau_{n-n} \ge 10^9 - 10^{10}$ s, matter stability bound $\ge 10^{35}$ yr

Motivation & Phehomenology

Neutron \leftrightarrow **Antineutron Operators**

Effective 6-quark operators *From Beyond (the Standard Model)* : interaction with a massive Majorana lepton, unified theories, etc.

[T.K.Kuo, S.T.Love, PRL45:93 (1980)] [R.N.Mohapatra, R.E.Marshak, PRL44:1316 (1980)]

$$\mathcal{H}_{n\bar{n}} = \begin{pmatrix} E+V & \delta m \\ \delta m & E-V \end{pmatrix} \qquad \tau_{n\bar{n}} = (2\delta m)^{-1}$$

$$\mathcal{L}_{\text{eff}} = \sum_{i} \left[c_i \mathcal{O}_i^{6q} + \text{h.c.} \right] \qquad \delta m = -\langle \bar{n} | \int d^4 x \, \mathcal{L}_{\text{eff}} | n \rangle = -\sum_{i} c_i \overline{\langle \bar{n} | \, \mathcal{O}_i^{6q} \, | n \rangle}$$

Dimension-9 point-like operators suppressed by $(M_X)^{-5}$

What would be the scale for new physics behind $n \leftrightarrow n^{-2}$?

Current limit on τ_{n-n} requires $M_X \ge few \cdot 10^2$ TeV

Sensitivity of matter to BN-violating terms is determined by nuclear scale physics and non-perturbative QCD

Neutron \leftrightarrow **Antineutron Matrix Elements**

Operators: pseudoscalar singlets w.r.t $SU(3)_{c} \otimes U(1)_{em} \left[\otimes SU(2)_{L} \right]$ $\mathcal{O}_{1\chi_{1}\{\chi_{2}\chi_{3}\}} = T^{s}_{ijklmn} \left[u^{iT}_{\chi_{1}} \mathcal{C} u^{j}_{\chi_{1}} \right] \left[d^{kT}_{\chi_{2}} \mathcal{C} d^{l}_{\chi_{2}} \right] \left[d^{mT}_{\chi_{3}} \mathcal{C} d^{n}_{\chi_{3}} \right]$ $\mathcal{O}_{2\{\chi_{1}\chi_{2}\}\chi_{3}} = T^{s}_{ijklmn} \left[u^{iT}_{\chi_{1}} \mathcal{C} d^{j}_{\chi_{1}} \right] \left[u^{kT}_{\chi_{2}} \mathcal{C} d^{l}_{\chi_{2}} \right] \left[d^{mT}_{\chi_{3}} \mathcal{C} d^{n}_{\chi_{3}} \right]$ $\mathcal{O}_{3\{\chi_{1}\chi_{2}\}\chi_{3}} = T^{a}_{ijklmn} \left[u^{iT}_{\chi_{1}} \mathcal{C} d^{j}_{\chi_{1}} \right] \left[u^{kT}_{\chi_{2}} \mathcal{C} d^{l}_{\chi_{2}} \right] \left[d^{mT}_{\chi_{3}} \mathcal{C} d^{n}_{\chi_{3}} \right]$ [T.Kuo, S.Love, PRL45:93 (1980)] [S.Rao, R.Shrock, PL

Chiral $SU(2)_{L,R}$ multiplet classification:

Computed using MIT bag model

[S.Rao, R.Shrock, PLB116:238 (1982)]

$[(RRR)_{3}]$	$\int \mathcal{O}^1_{R(RR)} + 4\mathcal{O}^2_{(RR)R}$	${f 3}_R\otimes {f 0}_L$	$ (\alpha_S/4\pi)(-12)$ `			
$[(RRR)_1]$	$\mathcal{O}^2_{(RR)R} - \mathcal{O}^1_{R(RR)} \equiv 3\mathcal{O}^3_{(RR)R}$	$1_R \otimes 0_L$	$(\alpha_S/4\pi)(-2)$	$\int SU(2)_{L} \times U(1)$		
$[R_1(LL)_2]$	$\mathcal{O}_{(LL)R}^2 - \mathcal{O}_{L(LR)}^1 \equiv 3\mathcal{O}_{(LL)R}^3$	$1_R\otimes 0_L$	0	-symmetric		
$[(RR)_{1}L_{0}]$	$3\hat{\mathcal{O}}^{3}_{(LR)R}$	$1_R\otimes 0_L$	$\left(\left(\alpha_S/4\pi \right) (+2) \right)$.)		
$\left[(RR)_{2} L_{1} \right]_{(1)}$	$\mathcal{O}^1_{L(RR)}$	$2_R \otimes 1_L$	$(\alpha_S/4\pi)(-6)$			
$\left[(RR)_{2}L_{1}\right]_{(2)}$	$\mathcal{O}_{(LR)R}^{2}$	${f 2}_R\otimes {f 1}_L$	$(\alpha_S/4\pi)(-6)$			
$\left[(RR)_{2}L_{1}\right]_{(3)}$	$\int \mathcal{O}_{R(LR)}^{1} + 2\mathcal{O}_{(RR)L}^{2}$	$2_R \otimes 1_L$	$(\alpha_S/4\pi)(-6)$			
		+ L↔R counterparts				

Chiral symmetry is essential for simple renormalization

Sergey N. Syritsyn

Lattice Calculation

No quark-disconnected contractions!

Single propagator $\rightarrow \forall t_1, t_2$

Initial calculation with anisotropic Wilson in [M.Buchoff, C.Schroeder, J.Wasem, arXiv:1207.3832 (LATTICE2012)]

Sergey N. Syritsyn

$$\langle n | \mathcal{O} | \bar{n} \rangle \Big|_{\text{lat}} = \langle n | \mathcal{O} | \bar{n} \rangle$$

+ $O(e^{-\Delta E_{\text{exc}} t_1}, e^{-\Delta E_{\text{exc}} t_2}, e^{-\Delta E_{\text{exc}} (t_1 + t_2)})$

Complete set of correlators for sophisticated exc.state analysis:

- Exponential fits
- Variational (GPoF)

Preliminary Results

Physical pions m_{π} = 140 MeV

[RBC and UKQCD collaborations, arXiv:1411.7017]

- lattice $48^3 \times 96 = 5.5^3 \times 10.9$ fm
- ♦ lattice spacing a = 0.123 fm, $a^{-1} = (1.730(4))$ GeV; $\delta(a^{-6}) \approx 1.4\%$

chiral (Möbius Domain Wall Fermions)

28 x 81 samples (AMA)

PRELIMINARY ANALYSIS:

simplified analysis of exc.states

$$\langle n|\mathcal{O}|\bar{n}\rangle \sim \frac{C_{n\mathcal{O}\bar{n}}(t_2,0,-t_1)}{\sqrt{C_{nn}(t_2,0)C_{\bar{n}\bar{n}}(0,-t_1)}}$$

Effective Mass: Gauging Excited States

Lattice Matrix Elements

scaled x10⁶, kinematics factors not divided out

Separation T=10 : ~10% stat.errorbars, consistent with T=12

Sergey N. Syritsyn

N-Nbar oscillations on a Lattice

LATTICE 2015, July 14-18, Kobe, Japan

Renormalization

Renormalization : RI-(S)MOM on a lattice

$$(G_I)^{ijklmn}_{\alpha\beta\gamma\delta\epsilon\eta}(x,p_1\dots p_6) = \langle \mathcal{O}_I \bar{d}^n_\eta(p_6) \bar{d}^m_\epsilon(p_5) \bar{d}^l_\delta(p_4) \bar{d}^k_\gamma(p_3) \bar{u}^j_\beta(p_2) \bar{u}^i_\alpha(p_1) \rangle$$

 $p_1 = p_3 = p_5 = p$ $p_2 = p_4 = p_6 = -p$

Ext.momenta assigned to match the 2-loop pert.QCD calculation [M.Buchoff, M.Wagman, arXiv:1506.00647]

Contractions : loop over $(N_s N_c)^6$, for each $(N_s N_c)^6$ elements, every site (with vol.sources)

- use Fouirer-transf. propagators $x_0 \rightarrow p_i$ for all p_i (reuse RHQBBar data, 20*81 samples)
- fermion symmetry: antisymmetrize propagators $(u_p \otimes u_{-p})$, $(d_p \otimes d_{-p})$ before contractions

Use 4d diagonal p = (k, k, k, k), $(a \cdot k) < \pi/2$ to minimize discretization errors at higher scale

Renormalization

Restoring Chiral Isomultiplets

Sergey N. Syritsyn

N-Nbar oscillations on a Lattice

LATTICE 2015, July 14-18, Kobe, Japan

Renormalization

"Scale-independent" Ren.factors

Take variances between 2–4 GeV and 4–6 GeV fits as estimates of syst.errors

Preliminary Results in MSbar(2GeV)

DO NOT QUOTE PRELIMINARY DO NOT QUOTE PRELIMINARY DO NOT QU

	$Z(\text{lat} \to \overline{MS})$	$\mathcal{O}^{\overline{MS}(2 { m GeV})}$	Bag "A"	$\frac{\text{LQCD}}{\text{Bag "A"}}$	Bag "B"	$\frac{\text{LQCD}}{\text{Bag "B"}}$
$[(RRR)_{3}]$	0.62(12)	0	0	_	0	_
$[(RRR)_{1}]$	0.454(33)	45.4(5.6)	8.190	5.5	6.660	6.8
$[R_1(LL)_0]$	0.435(26)	44.0(4.1)	7.230	6.1	6.090	7.2
$[(RR)_{1}L_{0}]$	0.396(31)	-66.6(7.7)	-9.540	7.0	-8.160	8.1
$[(RR)_2 L_1]^{(1)}$	0.537(52)	-2.12(26)	1.260	-1.7	-0.666	3.2
$[(RR)_2 L_1]^{(2)}$	0.537(52)	0.531(64)	-0.314	-1.7	0.167	3.2
$[(RR)_2 L_1]^{(3)}$	0.537(52)	-1.06(13)	0.630	-1.7	-0.330	3.2

- matrix elements : T=10 plateau average
- renormalization: only syst.errors, estimated from variation over entire range
- MIT Bag model results from [S.Rao, R.Shrock, PLB116:238 (1982)]

OTE PRELIMINARY DO NOT QUOTE PRELIMINARY DO NOT QUOTE PRELIMI

Summary & Outlook

Clear lattice signal for non-zero $\langle n | \mathcal{O}^{6q} | \bar{n} \rangle$ even with modest statistics *Physical m*_{π} = 140 MeV *pion mass lattices with chiral symmetry*

Comparison with the MIT Bag Model

Current stat&sys. errors already not exceed ~15% Reduction of model dependence of n-nbar oscillations phenomenology

Outlook

Study and improve control of syst.errors in renormalization Alternative momentum arrangement? Step-scaling? Two-loop perturbative running and matching?

Improve analysis to extract ground state M.E. Easy to analyze excited state effects with chosen scheme

Study discretization effects with another (finer) lattice spacing

BACKUP

Neutron Oscillations and Baryogenesis

Baryosynthesis requires B – or L – violation :

- leptotenesis: ΔL above T_{EW} , transformed to ΔB by sphalerons
- (if exist) $n-\overline{n}$ oscillations can wash away ΔB during EW transition
- then, $n \leftrightarrow n$ must explain post-sphaleron baryogenesis below T_{EW} upper limit on $\tau_{n-n} < 5 \cdot 10^{10}$ sec (proton-decay already excluded)

Interplay of T_{EW} and ΔB scales

Neutron Oscillation and Neutrino See-Saw

hightarrow n-n oscillation $\Delta B = 2$ breaks (*B*-*L*) : beyond-SM physics

Similarly, $\Delta L = 2$ from Majorana neutrino masses in the see-saw mechanism: is there connection between the two?

[Mohapatra, Marshak, PRL44:1316 (1980)] Quark-lepton unification theory $SU(2)_R \otimes SU(2)_L \otimes [U(1)_{(B-L)} \otimes SU(3)_c]_{(remnants of SU(4'))}$ with Majorana ν_R predicts $\Delta L = 2$ $\Delta B = 2$ Spontaneous breaking $SU(2)_R \otimes U(1)_{(B-L)} \rightarrow U(1)_Y$ $\langle \Delta_{R,44} \rangle = v \neq 0$ with Higgs field

Searches for $n \to \bar{n}$: Proposed Improvements

[Phillips et al, arXiv:1410.1100]

Free-neutron oscillation (similar to ILL):

Maximize Prob ~ $N_n * (t_{free})^2$

Neutrons from spallation sources:

e.g. European Spallation source: x12 neutron flux

- Elliptic mirror for slow neutrons (reflect ~70% of $v_{\perp} \approx 40$ m/s neutrons)
- Better mag.field screening (B < 1 nT) and longer flight time</p>

Expected to increase sens. $x10^2-10^3$ ILL, $\tau_{n-n} \ge 10^9-10^{10}$ s, matter stability bound $\ge 10^{35}$ yr

- Other proposed experiments:
 - stored ultra-cold neutrons (4-5m/s)
 - vertical cold neutron beams