Topological observables in many-flavour QCD

Ed Bennett
for the LatKMI Collaboration

Lattice 2015, Kobe, Japan

The LatKMI Collaboration

－Y．Aoki
－T．Aoyama
－T．Maskawa
－K．Nagai
－K．Yamawaki
．（d）KEK
－M．Kurachi
－A．Shibata
－Lawrence Livermore
－E．Rinaldi
－ $\left.\begin{array}{c}\text { Aix＊Marseille } \\ \text { universite }\end{array}\right)\left.{ }^{P}\right|^{T}$
－K．Miura
－$\overbrace{\text { Rues }}$
－H．Ohki
－Swansea University Prifysgol Abertawe
－E．Bennett
部蹻波大学
－T．Yamazaki

Outline

Motivation

- Investigation and classification gauge theories is an area of interest
- Topological observables can check ergodicity, as well as a variety of other uses
- Can we identify (near-)conformal gauge theories from their topology?

Topological charge

Topological charge density:

$$
q(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{tr}\left\{F_{\mu \nu}(x) F_{\rho \sigma}(x)\right\}
$$

Topological charge:

$$
Q=\sum_{x} q(x)
$$

UV fluctuations dominate over topology; remove with the gradient flow:

$$
\begin{aligned}
\dot{B}_{\mu} & =D_{\nu} G_{\mu \nu} \\
\left.B_{\mu}\right|_{t=0} & =A_{\mu}
\end{aligned}
$$

Can also use gradient flow to define scale t_{0} as:

$$
\begin{aligned}
\left.t^{2} E(t)\right|_{t=t_{0}} & =0.3 \\
\text { where } E & =\frac{1}{4} \operatorname{tr} G_{\mu \nu} G_{\mu \nu}
\end{aligned}
$$

Topological susceptibility and instanton size

Topological susceptibility:

$$
\chi=\frac{\left\langle Q^{2}\right\rangle}{V} \equiv \frac{\left\langle Q^{2}\right\rangle-\langle Q\rangle^{2}}{V}
$$

Instanton size:

$$
q_{\text {peak }}=\frac{6}{\pi^{2} \rho^{4}}
$$

Frozen topology and subvolumes

- Moving towards physical region (chiral, continuum limits) can trap simulation at one Q.
- \Rightarrow Must verify sufficient ergodicity.
- Can we find χ for frozen ensembles with insufficient statistics to estimate $\left\langle Q^{2}\right\rangle$?
- Yes: look instead at a finite subvolume V_{s}. Then:

$$
\begin{aligned}
Q_{\mathrm{s}} & =\sum_{V_{\mathrm{s}}} q(x) \\
\chi & =\frac{\left\langle Q_{\mathrm{s}}^{2}\right\rangle-\frac{V_{\mathrm{s}}}{V}\langle Q\rangle^{2}}{V_{\mathrm{s}}}
\end{aligned}
$$

Topological behaviour near the conformal window

- Conformal theory with finite deforming mass behaves as confining with heavy fermions
- Thus topological observables will be as in pure gauge theory
- Deforming mass will alter scale of theory, so match with appropriate observables

Setup

- Symanzik gauge action
- HISQ fermion action
- LatKMI configurations:
$-N_{\mathrm{f}}=4: V=30 \times 20^{3}, \beta=3.7$
- $N_{\mathrm{f}}=8: V=\frac{4}{3} L \times L^{3}, 18 \leq L \leq 42, \beta=3.8$
- $N_{\mathrm{f}}=12: V=\frac{4}{3} L \times L^{3}, 18 \leq L \leq 36, \beta=3.7,4.0$
- $N_{\mathrm{f}}=16: V=24^{4}, 48^{4}, \beta=12.0$
- Plus pure gauge: $V=32 \times 24^{3}, 4.0 \leq \beta \leq 5.0$

$N_{\mathrm{f}}=16$

- Topology is strongly suppressed; $q(x)$ is zero
- Volume is too small
- Ignored in subsequent analysis

$N_{\mathrm{f}}=0$

- Moving towards continuum limit freezes topology
- Subvolume method used at larger β

$N_{\mathrm{f}}=0$ size distribution

$$
\beta=4.5
$$

$\beta=5.0$

- $\beta=5.0$ is overly volume constrained
- Ignored from subsequent analysis

$N_{\mathrm{f}}=4$

- Good ergodicity

$N_{\mathrm{f}}=8$

- Slightly more autocorrelation than $N_{\mathrm{f}}=4$, but good ergodicity still

$N_{\mathrm{f}}=12$

- Obvious freezing, becoming more severe at low m
- Subvolume method used here

Scaling with $a \sqrt{\sigma}$

- $N_{\mathrm{f}}=0$ is roughly flat
- $N_{\mathrm{f}}=12$ is near-flat; matches $N_{\mathrm{f}}=0$ at low $a \sqrt{\sigma}$
- $N_{\mathrm{f}}=4$ has positive gradient
- $N_{\mathrm{f}}=8$ matches $N_{\mathrm{f}}=12$ at high $a \sqrt{\sigma}$, but turns over moving towards the chiral limit

Scaling with t_{0}

- Dimensionless product $\chi^{1 / 4} t_{0}^{1 / 2}$ is flat for pure gauge
- Theories roughly match in quenched (small t_{0}) limit
- $N_{\mathrm{f}}=12$ rapidly flattens off; $N_{\mathrm{f}}=8,4$ have increasingly steep gradients

Instanton size distribution

- Instanton size distributions for $N_{\mathrm{f}}=8,12$ match $N_{\mathrm{f}}=0$ in physical units
- $N_{\mathrm{f}}=4$ diverges slightly
- Can we use this to view $\langle\rho\rangle$ as a function of m_{f} ?

Scaling of ρ

- Meaning here unclear.

Conclusions

- LatKMl's $N_{\mathrm{f}}=4$ and 8 QCD simulations are topologically ergodic; $N_{\mathrm{f}}=12$ is borderline but shows ergodicity in the topological charge density
- Scaling of χ consistent with $N_{f}=12$ being (near-)conformal, $N_{\mathrm{f}}=8$ walking, $N_{\mathrm{f}}=4$ confining and chirally broken
- Instanton size somewhat supports these results, but better understanding needed

Next steps:

- A look at $N_{\mathrm{f}}>12$ without constricted volume would be interesting
- C.f. $\mathrm{SU}(2)$ with fundamental matter

