Topological observables in many-flavour QCD

Ed Bennett for the LatKMI Collaboration

Lattice 2015, Kobe, Japan

The LatKMI Collaboration

- Y. Aoki
- T. Aoyama
- T. Maskawa
- K. Nagai
- K. Yamawaki
- . ©KEK
 - M. Kurachi
 - A. Shibata

— E. Rinaldi

– K. Miura

– H. Ohki

- E. Bennett

Outline

Motivation

- Investigation and classification gauge theories is an area of interest
- Topological observables can check ergodicity, as well as a variety of other uses
- Can we identify (near-)conformal gauge theories from their topology?

Topological charge

Topological charge density:

$$q(x) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left\{ F_{\mu\nu}(x) F_{\rho\sigma}(x) \right\}$$

Topological charge:

$$Q = \sum_{x} q(x)$$

UV fluctuations dominate over topology; remove with the gradient flow:

$$\dot{B}_{\mu} = D_{\nu} G_{\mu\nu}$$
$$B_{\mu}|_{t=0} = A_{\mu}$$

Can also use gradient flow to define scale t_0 as:

$$t^2 E(t) \big|_{t=t_0} = 0.3$$

where $E = \frac{1}{4} \operatorname{tr} G_{\mu\nu} G_{\mu\nu}$

Topological susceptibility and instanton size

Topological susceptibility:

$$\chi = \frac{\left\langle Q^2 \right\rangle}{V} \equiv \frac{\left\langle Q^2 \right\rangle - \left\langle Q \right\rangle^2}{V}$$

Instanton size:

$$q_{\rm peak} = \frac{6}{\pi^2 \rho^4}$$

Frozen topology and subvolumes

- Moving towards physical region (chiral, continuum limits) can trap simulation at one Q.
- \Rightarrow Must verify sufficient ergodicity.
- Can we find χ for frozen ensembles with insufficient statistics to estimate $\left< Q^2 \right>$?
- Yes: look instead at a finite subvolume $V_{\rm s}$. Then:

$$egin{aligned} Q_{ extsf{s}} &= \sum_{V_{ extsf{s}}} q(x) \ \chi &= rac{ig\langle Q_{ extsf{s}}^2 ig
angle - rac{V_{ extsf{s}}}{V} ig\langle Q ig
angle^2} \ V_{ extsf{s}} \end{aligned}$$

Topological behaviour near the conformal window

- Conformal theory with finite deforming mass behaves as confining with heavy fermions
- Thus topological observables will be as in pure gauge theory
- Deforming mass will alter scale of theory, so match with appropriate observables

Setup

- Symanzik gauge action
- HISQ fermion action
- LatKMI configurations:

$$\begin{array}{l} - & N_{\rm f} = 4; \ V = 30 \times 20^3, \ \beta = 3.7 \\ - & N_{\rm f} = 8; \ V = \frac{4}{3}L \times L^3, \ 18 \le L \le 42, \ \beta = 3.8 \\ - & N_{\rm f} = 12; \ V = \frac{4}{3}L \times L^3, \ 18 \le L \le 36, \ \beta = 3.7, \ 4.0 \\ - & N_{\rm f} = 16; \ V = 24^4, \ 48^4, \ \beta = 12.0 \\ - & {\rm Plus \ pure \ gauge:} \ V = 32 \times 24^3, \ 4.0 \le \beta \le 5.0 \end{array}$$

 $N_{\rm f} = 16$

- Topology is strongly suppressed; q(x) is zero
- Volume is too small
- Ignored in subsequent analysis

- Moving towards continuum limit freezes topology
- Subvolume method used at larger β

$N_{\rm f} = 0$ size distribution

- $\beta = 5.0$ is overly volume constrained
- Ignored from subsequent analysis

 $N_{\rm f} = 4$

• Good ergodicity

$N_{\rm f}=8$

- Slightly more autocorrelation than $N_{\rm f}=4,$ but good ergodicity still

- Obvious freezing, becoming more severe at low \boldsymbol{m}
- Subvolume method used here

Scaling with $a\sqrt{\sigma}$

- $N_{\rm f} = 0$ is roughly flat
- $N_{\rm f}=12$ is near-flat; matches $N_{\rm f}=0$ at low $a\sqrt{\sigma}$
- $N_{\rm f} = 4$ has positive gradient
- $N_{\rm f}=8$ matches $N_{\rm f}=12$ at high $a\sqrt{\sigma}$, but turns over moving towards the chiral limit

Scaling with t_0

- Dimensionless product $\chi^{1/4} t_0^{1/2}$ is flat for pure gauge
- Theories roughly match in quenched (small t_0) limit
- + $N_{\rm f} = 12$ rapidly flattens off; $N_{\rm f} = 8, 4$ have increasingly steep gradients

Instanton size distribution

- Instanton size distributions for $N_{\rm f}=8,12$ match $N_{\rm f}=0$ in physical units
- $N_{\rm f} = 4$ diverges slightly
- Can we use this to view $\langle \rho \rangle$ as a function of $m_{\rm f}$?

Scaling of ρ

• Meaning here unclear.

Conclusions

- LatKMI's $N_{\rm f}=4$ and 8 QCD simulations are topologically ergodic; $N_{\rm f}=12$ is borderline but shows ergodicity in the topological charge density
- Scaling of χ consistent with $N_{\rm f} = 12$ being (near-)conformal, $N_{\rm f} = 8$ walking, $N_{\rm f} = 4$ confining and chirally broken
- Instanton size somewhat supports these results, but better understanding needed

Next steps:

- A look at $N_{\rm f} > 12$ without constricted volume would be interesting
- C.f. $\mathop{\rm SU}(2)$ with fundamental matter