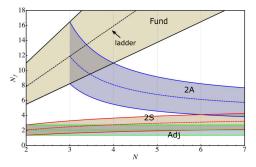
Approaching the conformal window: Systematic study of the particle spectrum in SU(2) field theory with $N_f = 2,4$ and 6 fundamental fermions.

Sara Tähtinen

Alessandro Amato, Teemu Rantalaiho, Kari Rummukainen, Kimmo Tuominen

LATTICE, 2015


Technicolor

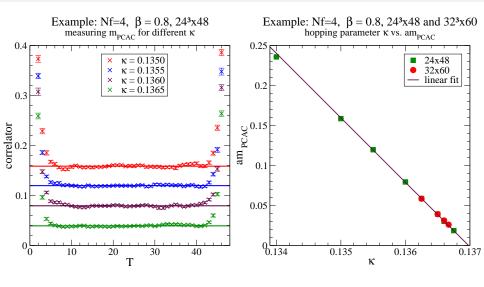
• Idea: explain EW symmetry breaking by a new force

- SU(N) gauge field + N_f massless fermions
- EW symmetry broken by a chiral condensate
- Higgs composite: solves fine tuning problem
- Fermion masses from extended TC
 - Motivation for non-QCD like running
 - Walking: $g \sim g_*$ over large scale separation
 - Infrared fixed point (IRFP): $\beta = \mu \frac{dg}{d\mu}$ is zero at g_*
- IRFP at strong coupling
 - \Rightarrow Perturbative analysis not valid
 - \Rightarrow Lattice simulations required

Conformal window = Range of N_f where IRFP exists

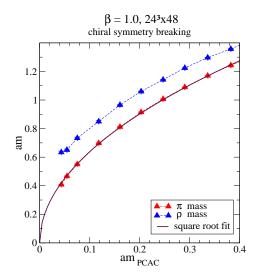
- Walking coupling: near the lower edge of the conformal window?
- Below conformal window: chiral symmetry breaking

Ref. [Sannino, Tuominen]

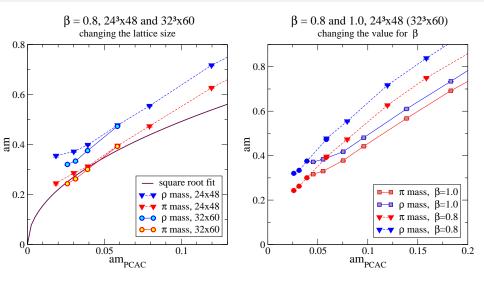

- Hadron spectrum: when $m_Q \rightarrow 0$
 - Pions massless as $m_\pi \propto m_Q^{1/2} o$ QCD-like chiral symmetry breaking
 - $\bullet~{\sf All}$ states massless as $M\propto m_Q^{\frac{1}{1+\gamma(g_*^2)}}\to{\sf IRFP}$

SU(2) theory with $N_f = 2$, 4 and 6 fundamental fermions Approaching conformal window

- $N_f = 2$, 4 evidence for chiral symmetry breaking is found, but $N_f = 6$ is unclear [Karavirta et al. (2011), Appelquist et al. (2013)]
- Our goal: to study hadron spectrum and scale-setting, when approaching the conformal window.
- Method: using
 - HEX smeared Wilson clover action for fermions
 - thin link Wilson + stout link Wilson for gauge fields
- Lattice size: $24^3 \times 48$, and $32^3 \times 60$ for small am_Q
- Number of configurations: 80-200
- Scale setting with gradient flow

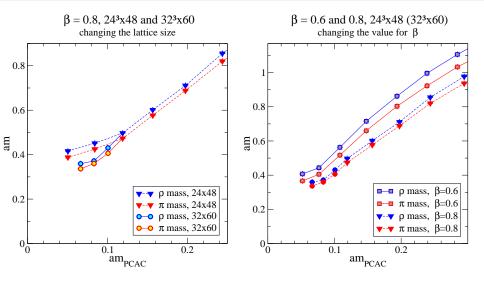

・ 同 ト ・ ヨ ト ・ ヨ ト

Measuring am_{PCAC} and defining κ_{crit}



Hadron spectrum: $N_f = 2$ (preliminary results)

Hadron spectrum: $N_f = 4$ (preliminary results)

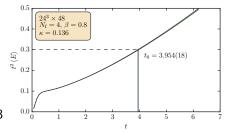


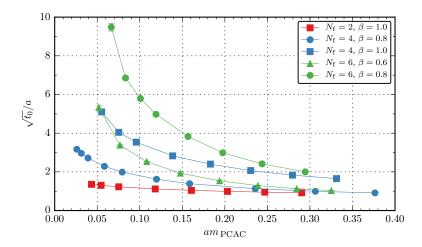
S. Tähtinen (University of Helsinki) Approaching the conformal window Kobe

Kobe 2015 7 / 14

< ∃ ►

Hadron spectrum: $N_f = 6$ (very preliminary results)

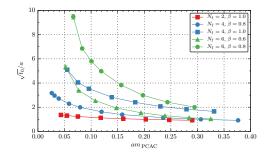



Wilson flow: t₀, w₀

- Scale-setting:
 - Required to predict dimensional quantities in physical units
 - Determine accurately the relative physical lenght scale of different simulations
- Wilson flow
 - very precise, cheap and straightforward
 - t_0 : solve $t_0^2 \langle E(t_0) \rangle = 0.3$
 - E(t) =continuum-like action density at flow time t

•
$$w_0$$
: solve $t \frac{d}{dt} (t^2 \langle E(t) \rangle)|_{t=w_0^2} = 0.3$

Wilson flow: $\sqrt{t_0}$ (preliminary results)

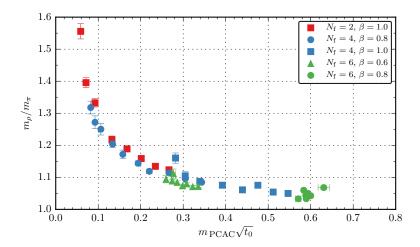


× (注) 注 つへへ Kobe 2015 10 / 14

・ 同 ト ・ ヨ ト ・ ヨ ト

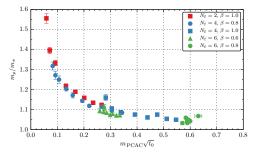
Wilson flow: $\sqrt{t_0}$ (preliminary results)

- $\sqrt{t_0}/a$ grows as
 - N_f is increased
 - β is increased (weaker bare coupling)
- If IRFP: $\sqrt{t_0}/a \rightarrow \infty$ as $am_{PCAC} \rightarrow 0$
 - fixed point at $N_f = 6$?
- $N_f = 2$, 4: finite value as $am_{PCAC} \rightarrow 0$



- Keeping $\sqrt{t_0}$ fixed: Bigger $\sqrt{t_0}/a$ means smaller lattice spacing \rightarrow physical quark masses heavier
- \Rightarrow Near the conformal window: very strong lattice coupling is needed to avoid small volume squeeze

Kobe 2015 11 / 14


A B A A B A

Results in physical units (preliminary results)

Results in physical units (preliminary results)

- If chiral symmetry breaking: $m_{\rho}/m_{\pi} \rightarrow \infty$ as $m_{PCAC} \rightarrow 0$
 - Case for $N_f = 2$ and 4
- $N_f = 6$ interesting:
 - $\beta = 0.8$: looks like IRFP?
 - $\beta = 0.6$: m_{ρ}/m_{π} grows along "universal" curve \rightarrow chiral symmetry breaking?

- $\Rightarrow \text{Next: study } N_f = 8 \text{ (which has IRFP, next talk by Leino)} \\ \text{to see how it behaves}$
- Smaller *m_{PCAC}* can be reached by:
 - Smaller *am_{PCAC}* and bigger lattice (expensive)
 - Decreasing β

Conclusions and outlook

- m_Q dependence of the $\sqrt{t_0}$ scale becomes stronger as N_f is increased
- \bullet Volume squeezes quicker than expected \rightarrow requires very strong couplings
- Difficult to reach the chiral regime even at Nf=4
- Hint for chiral symmetry breaking at Nf=6?
- Bigger lattices for smaller quark masses
- More values of β in $N_f = 6$ case
- Simulating $N_f = 8$
- Defining the glueball masses and the string tension
- Measure the decay constant
- In future: scalar measurement