The curvature of the chiral phase transition line for small values of the chemical potential

Prasad Hegde

[for the BNL-Bielefeld-CCNU collaboration]

Central China Normal University, Wuhan, China.

The XXXIII International Symposium on Lattice Field Theory

Kobe, Japan
14 July 2015

The chiral phase transition

Columbia plot

$$
\begin{aligned}
t & =\frac{1}{t_{0}} \frac{T-T_{c}}{T_{c}} & & h=\frac{H}{h_{0}} \\
z & =t / h^{1 / \beta \delta} & M & =h^{1 / \delta} f_{G}(z)
\end{aligned}
$$

The phase transition between the broken and restored phases is believed to be second-order in the limit of the light quark mass $\mathrm{m}_{1} \rightarrow 0$ and $\mathrm{m}_{\mathrm{s}}>$ $m_{s}^{\text {tric. }}$.

There is some evidence that the universality class is $\mathrm{O}(4)$, in accordance with the Pisarski-Wilczek picture [Pisarski and Wilczek, PRD29, 338 (1984)].
[S.Ejiri et al. [BNL-Bielefeld] PRD80, 014504 (2009)]

What happens at $\mu>0$?

The second-order transition meets a firstorder line at the tricritical point P [Y.Hatta \& T.Ikeda, PRD 67, 014028 (2003)].

$$
t=\frac{1}{t_{0}}\left[\frac{T-T_{c}}{T_{c}}+\kappa\left(\frac{\mu}{T}\right)^{2}\right]
$$

curvature

$$
t \sim \frac{T-T_{c}(\mu)}{T_{c}(\mu)}=0 \Longrightarrow T_{c}(\mu)=T_{c}(0)\left[1-\kappa\left(\frac{\mu}{T}\right)^{2}+\ldots\right]
$$

Calculating the curvature

Lattice simulations not possible at $\mu>0$, however:

- Derivatives of observables w.r.t. μ defined at $\mu=0$. Therefore,
- Extend the scaling functions to $\mu>0$

$$
t=\frac{1}{t_{0}}\left[\frac{T-T_{c}}{T_{c}}+\kappa\left(\frac{\mu}{T}\right)^{2}\right] \quad z=t / h^{1 / \beta \delta}
$$

- and calculate derivatives of chiral observables e.g.

$$
\frac{\partial\langle\bar{\psi} \psi\rangle}{\partial(\mu / T)^{2}}=\frac{\chi_{\text {mixed }}}{T}=\frac{2 \kappa T}{t_{0} m_{s}} h^{-(1-\beta) / \beta \delta} f_{G}^{\prime}(z)
$$

Alternatively, work at imaginary μ and perform an analytic continuation to real $\boldsymbol{\mu}$ [de Forcrand and Philipsen, NP B642, 270 (2002), B673, 190 (2003); M.D'Elia and M.P.Lombardo, PR D67 014505 (2003) D70 014709 (2004)].

Curvature calculation: Current status

The strange quark was set to its physical value, and the light quark mass was varied so that $160 \mathrm{MeV} \geq \mathrm{m}_{\pi} \geq 80 \mathrm{MeV}$.

For each quark mass, we generated $\sim 10,000$ configurations for 4-5 temperatures in the transition region, and measured the chiral condensate and its μ-derivatives stochastically, using ~ 500 random sources.

Light quark chiral observables

$\langle\bar{\psi} \psi\rangle=\left\langle\operatorname{tr} M^{-1}\right\rangle$

See the talk by H.-T.Ding on Wednesday

The curvature matrix

$$
\begin{gathered}
\frac{1}{T} \frac{\partial\langle\bar{\psi} \psi\rangle_{l}}{\partial \mu_{i} \partial \mu_{j}}=\kappa_{i j} \frac{2 T}{t_{0} m_{s}} h^{-(1-\beta) / \beta} \underbrace{\prime}_{G}(z) \\
\text { Curvature coefficients } i, j=\{l, s \\
\text { Mixed susceptibility }
\end{gathered}
$$

Once t_{0}, h_{0} and T_{c} are determined from a scaling analysis, the only unknown in the formula below is K_{ij}.
Mixed susceptibility

The same scaling function controls the behavior along both μ_{-}- and μ_{s}-directions.

The curvature along the μ_{1} direction

Rough estimate: Vary $\mathrm{K}_{\| \mid}$by hand to obtain upper and lower bounds.
Rigorous approach: Do a global one-parameter (i.e. $\mathrm{k}_{\|}$) fit to all quark masses. Should also lead to smaller errors on k_{ll}.

Our new results are consistent with our previous result [arXiv:1011.3130] that was done using the p4 action and on $\mathrm{N}_{\mathrm{T}}=4$ lattices.

The μ_{s} and $\mu_{\mathrm{r}}-\mu_{\mathrm{s}}$ curvatures

The new observables that we have compared to [arXiv:1011.3130] are k_{ss} and K_{15}.
K_{ss} is an order of magnitude smaller than $\mathrm{K}_{\|}$. This tells us that $\mathrm{K}_{\mathrm{B}} \approx \mathrm{k}_{\|} / 9$ to a very good approximation.

Currently, the off-diagonal curvature K_{ls} is less constrained than both K_{11} and K_{ss} and could have either sign. However, it is very unlikely to be bigger than k_{ss}.

Summary

The chiral transition temperature as a function of μ_{B} can be determined from the universal properties of QCD.

For small values of μ_{B} and in 2+1-flavor QCD, the behavior is characterized by a curvature matrix.

We are currently in the process of calculating the elements of this matrix using HISQ fermions.

We found that the largest matrix element is $\mathrm{k}_{\|}$. This implies that $\mathrm{K}_{\mathrm{B}}=\mathrm{K}_{\|} / 9$ to a very good approximation.

Of the other two elements, both k_{ls} and k_{ss} are an order of magnitude smaller. K_{ls} could even be zero or negative.

