The curvature of the chiral phase transition line for small values of the chemical potential

Prasad Hegde

[for the BNL-Bielefeld-CCNU collaboration]

Central China Normal University, Wuhan, China.

The XXXIII International Symposium on Lattice Field Theory

> Kobe, Japan 14 July 2015

The chiral phase transition

 $z = t/h^{1/\beta\delta} \qquad M = h^{1/\delta} f_G(z)$

The phase transition between the broken and restored phases is believed to be second-order in the limit of the light quark mass $m_1 \rightarrow 0$ and $m_s > m_s^{tric}$.

There is some evidence that the universality class is O(4), in accordance with the Pisarski-Wilczek picture [Pisarski and Wilczek, PRD29, 338 (1984)].

What happens at μ >0?

The second-order transition meets a firstorder line at the tricritical point P [Y.Hatta & T.Ikeda, PRD 67, 014028 (2003)].

 $t \sim \frac{T - T_c(\mu)}{T_c(\mu)} = 0 \implies T_c(\mu) = T_c(0) \left[1 - \kappa \left(\frac{\mu}{T}\right)^2 + \dots \right]$

The quark chemical potential μ does not break chiral symmetry.

Second-order transition persists; however the scaling variable now becomes μ -dependent.

$$t = \frac{1}{t_0} \left[\frac{T - T_c}{T_c} + \kappa \left(\frac{\mu}{T}\right)^2 \right]$$

curvature

Calculating the curvature

Lattice simulations not possible at μ >0, however:

- Derivatives of observables w.r.t. μ defined at μ =0. Therefore,
- Extend the scaling functions to μ >0

$$t = \frac{1}{t_0} \left[\frac{T - T_c}{T_c} + \kappa \left(\frac{\mu}{T} \right)^2 \right] \qquad z = t/h^{1/\beta\delta}$$

and calculate derivatives of chiral observables e.g.

$$\frac{\partial \langle \bar{\psi}\psi \rangle}{\partial (\mu/T)^2} = \frac{\chi_{\text{mixed}}}{T} = \frac{2\kappa T}{t_0 m_s} h^{-(1-\beta)/\beta\delta} f'_G(z)$$

Alternatively, work at imaginary μ and perform an analytic continuation to real μ [de Forcrand and Philipsen, NP B642, 270 (2002), B673, 190 (2003); M.D'Elia and M.P.Lombardo, PR D67 014505 (2003) D70 014709 (2004)].

Curvature calculation: Current status

Difference of more than a factor of 2 between the various results.

Our previous calculation was done using the p4 action on N_{τ} =4 lattices. In this talk we will report on an improved calculation done on N_{τ} =6 lattices with the HISQ action.

The strange quark was set to its physical value, and the light quark mass was varied so that 160 MeV $\ge m_{\pi} \ge 80$ MeV.

For each quark mass, we generated ~10,000 configurations for 4-5 temperatures in the transition region, and measured the chiral condensate and its μ -derivatives stochastically, using ~500 random sources.

Light quark chiral observables

The curvature matrix

Once t_0 , h_0 and T_c are determined from a scaling analysis, the only unknown in the formula below is κ_{ii} .

The same scaling function controls the behavior along both μ_{l} - and μ_{s} -directions.

The curvature along the μ_{I} direction

Rough estimate: Vary κ_{μ} by hand to obtain upper and lower bounds.

Rigorous approach: Do a global one-parameter (i.e. κ_{μ}) fit to all quark masses. Should also lead to smaller errors on κ_{μ} .

Our new results are consistent with our previous result [arXiv:1011.3130] that was done using the p4 action and on $N_{\tau}=4$ lattices.

The μ_s and μ_l - μ_s curvatures

The new observables that we have compared to [arXiv:1011.3130] are $\kappa_{_{SS}}$ and $\kappa_{_{Is}}.$

Currently, the off-diagonal curvature κ_{ls} is less constrained than both κ_{ll} and κ_{ss} and could have either sign. However, it is very unlikely to be bigger than κ_{ss} .

Summary

The chiral transition temperature as a function of μ_{B} can be determined from the universal properties of QCD.

For small values of μ_B and in 2+1-flavor QCD, the behavior is characterized by a curvature matrix.

We are currently in the process of calculating the elements of this matrix using HISQ fermions.

We found that the largest matrix element is κ_{\parallel} . This implies that $\kappa_{\rm B} = \kappa_{\parallel}/9$ to a very good approximation.

Of the other two elements, both κ_{ls} and κ_{ss} are an order of magnitude smaller. κ_{ls} could even be zero or negative.