

Renormalization of two-dimensional XQCD

Ryo Yamamura (Osaka U.)

arXiv:1507.02392 [hep-th] "Renormalization of Extended QCD₂"

with Hidenori Fukaya (Osaka U.)

15/07/15

Lattice 2015 @Kobe

From QCD to Hadrons

New approach = XQCD

Reformulation of QCD Kaplan(2013)

Extended QCD (XQCD) = QCD + Auxiliary fields

XQCD is exactly equivalent to QCD

However,

XQCD contains low energy pictures more naturally !

(quark model, chiral perturbation, bag model...)

Lattice XQCD

Our final goal : Lattice XQCD Serious sign problem... (even at $\mu_B = 0$) $\bar{\psi} \left(\partial + i\mathbf{A} + \Phi P_+ + \Phi^{\dagger} P_- + \mathbf{v} + i\mathbf{a}\gamma_5 \right) \psi$ Interactions with auxiliary fields

Today : 2d continuum (X)QCD in the large Nc limit ('t Hooft model)

Our work

Renormalization group (RG) analysis of (XQCD)

П

What is the role of auxiliary fields at low-energy ?

Similar works: From Quarks and Gluons to Hadrons Braun, Jens et al. arXiv:1412.1045 [hep-ph]

Contents

- 1. Introduction
- 2. XQCD (Review)
- 3. RG analysis of (X)QCD
- 4. Summary

Definition of XQCD

partition function:
$$Z_{\text{QCD}} = \int e^{-S_{\text{QCD}}}$$
 (4d Euclidean)
Multiply $1 = \int e^{-S_{\text{aux}}}$
 $Z_{\text{QCD}} = Z_{\text{XQCD}} = \int e^{-S_{\text{QCD}} - S_{\text{aux}}}$

$$S_{\rm XQCD} \equiv S_{\rm QCD} + S_{\rm aux}$$

Cancellation by Fierz identity

$$1 = \int e^{-S_{\text{aux}}} \bullet S_{\text{aux}}$$
 is Gaussian.

 $S_{\text{aux}} \propto (\Phi^{\dagger} + \bar{\psi}P_{+}\psi)(\Phi + \bar{\psi}P_{-}\psi) \text{ Non-renormalizable}$ $= \Phi^{\dagger}\Phi + \bar{\psi}(\Phi P_{+} + \Phi^{\dagger}P_{-})\psi + (\bar{\psi}P_{+}\psi)(\bar{\psi}P_{-}\psi)$

Fierz identity \Rightarrow Cancellation

 $(\bar{\psi}P_+\psi)(\bar{\psi}P_-\psi) + \frac{1}{2}(\bar{\psi}\gamma_\mu\psi)(\bar{\psi}\gamma_\mu\psi) - \frac{1}{2}(\bar{\psi}\gamma_\mu\gamma_5\psi)(\bar{\psi}\gamma_\mu\gamma_5\psi) = 0$

$$S_{\text{aux}} \propto (\Phi^{\dagger} + \bar{\psi}P_{+}\psi)(\Phi + \bar{\psi}P_{-}\psi) + \frac{1}{2}(\mathbf{v}_{\mu} + \bar{\psi}\gamma_{\mu}\psi)^{2} + \frac{1}{2}(\mathbf{a}_{\mu} + i\bar{\psi}\gamma_{\mu}\gamma_{5}\psi)^{2}$$

Quark model picture in XQCD

$$\bar{\psi}\left(i\mathbf{A} + \Phi P_{+} + \Phi^{\dagger}P_{-} + \mathbf{v} + i\mathbf{a}\gamma_{5}\right)\psi$$

New interactions

(1) Repulsive interaction by \mathbf{v}_{μ} exchanges

⇒ weakening the attractive interaction

②Constituent quark mass by $\langle\Phi
angle$

$$(\Phi P_+ + \Phi^{\dagger} P_-)\bar{\psi}\psi \to \langle\Phi\rangle (P_+ + P_-)\bar{\psi}\psi = M\bar{\psi}\psi$$

①+② = weakly interacting and massive quarks Quark model picture !

Next step of XQCD

XQCD = QCD + auxiliary fields

naturally explained

- Quark model picture
- Massless pion
- bag model

low energy picture of QCD

Auxiliary fields in the low energy region ?

in XQCD

3. RG analysis of 2d (X)QCD

RG analysis of 2d large Nc (X)QCD ('t Hooft model) 't Hooft (1974)

Simple and Solvable

Chiral Symmetry Breaking in the large Nc limit

't Hooft model

't Hooft model = 2d QCD in the large Nc limit

No gluon self-interaction + planarity = solvable

't Hooft coupling
$$g^2 \equiv g_0^2 N_c$$
 is fixed.

Ladder approximation is exact

 \implies constituent mass : $M^2(m,g) = m^2 - g^2/\pi$

Set up

2 Counter terms (e.g. preserve the symmetry)

(1) regularization + (2) counter term = one scheme

③ Truncation

Neglect large Nc subleading and $O(\Lambda^{-4})$ terms.

RG flow of 2d large Nc QCD

Self-consistent equation \Rightarrow Non-perturbative result

 $Z_{\psi}^{2}(\Lambda) = 1 + \frac{\frac{g^{2}}{\pi\Lambda^{2}} \left(\log\left|\frac{\Lambda^{2}}{M^{2}}\right| - 1\right)}{1 - \frac{g^{2}}{\pi\Lambda^{2}} \log\left|\frac{\Lambda^{2}}{M^{2}}\right|},$ $m_R^2(\Lambda) = m^2 \left(1 + \frac{\frac{2g^2}{\pi\Lambda^2} \log \left| \frac{\Lambda^2}{M^2} \right|}{1 - \frac{g^2}{\pi\Lambda^2} \log \left| \frac{\Lambda^2}{M^2} \right|} \right)$ $g_R^2(\Lambda) = \frac{Z_{\psi}^2(\Lambda)g^2}{1 - \frac{g^2}{\pi\Lambda^2} \log\left|\frac{\Lambda^2}{M^2}\right|}.$

Around $\Lambda^2 \simeq M^2$, $(m_R, g_R) \sim (m, g)$

Reasonable results !

14/23

RG flow of 2d large Nc QCD

Self-consistent equation \Rightarrow Non-perturbative result

Around
$$\Lambda^2 \simeq M^2$$
, $(m_R,g_R) \sim (m,g)$

Reasonable results !

15/23

Set up in the RG study of XQCD

How does the flow change?

RG schemes

Φ becomes dynamical

Note : Φ acquires the kinetic term

 \mathbf{v}_{μ} remains to be an auxiliary field.

1-loop RG flow of XQCD

$$Z_{\Phi}(\Lambda) = \frac{y^2(\Lambda)}{\pi} \left(\frac{1}{\Lambda^2} - \frac{1}{\Lambda_{\rm cut}^2}\right) + O(\Lambda^{-4}),$$

$$m_{\Phi}^2(\Lambda) = \lambda^2 - \frac{y^2(\Lambda)}{\pi} \log\left(\frac{\Lambda_{\rm cut}}{\Lambda}\right) + O(\Lambda^{-2}),$$

$$y(\Lambda) = \frac{\alpha\lambda}{1 + \frac{\alpha_R^2(\Lambda)}{\pi} \log\left(\frac{\Lambda_{\rm cut}}{\Lambda}\right)} + O(\Lambda^{-2}),$$

$$m_R^2(\Lambda) = m^2 \left(1 + \frac{\frac{2g^2}{\pi\Lambda^2} \log\left|\frac{\Lambda^2}{M^2}\right|}{1 - \frac{g^2}{\pi\Lambda^2} \log\left|\frac{\Lambda^2}{M^2}\right|}\right),$$
Flows are not changed...
$$g_R^2(\Lambda) = \frac{Z_{\psi}^2(\Lambda)g^2}{1 - \frac{g^2}{\pi\Lambda^2} \log\left|\frac{\Lambda^2}{M^2}\right|}.$$
19/23

What is interesting in XQCD ?

$$\begin{split} &Z_{\Phi}(\Lambda)\partial_{\mu}\Phi^{\dagger}\partial^{\mu}\Phi + m_{\Phi}(\Lambda)\Phi^{\dagger}\Phi + y(\Lambda)\bar{\psi}\Phi P_{+}\psi + \text{h.c.}\\ &\text{When normalizing } Z_{\Phi}(\Lambda) = 1\,,\\ &Z^{-1/2}(\Lambda)y(\Lambda) \sim \sqrt{\pi}\Lambda\\ &Z^{-1}(\Lambda)m_{\Phi}^{2}(\Lambda) \sim \frac{\pi\Lambda^{2}}{y^{2}(\Lambda)} \bigg[\lambda^{2} - \frac{y^{2}(\Lambda)}{2\pi}\log\bigg(\frac{\Lambda_{\text{cut}}}{\Lambda}\bigg)\bigg]_{(\Lambda^{2} \ll \Lambda_{\text{cut}}^{2})}\\ &\text{Looks like quadratic divergence} \end{split}$$

⇒ Auxiliary fields decouple ? No effect on the low energy physics ?

20/23

π becomes dominant

$$m_{\Phi}^{2} \Phi^{\dagger} \Phi, \ m(\Phi + \Phi^{\dagger}) \longrightarrow m_{\pi}^{2} = m \langle \bar{\psi}\psi \rangle + O(m)$$
$$\Phi = \langle \Phi \rangle e^{\sigma + i\pi} , \langle \Phi \rangle \propto \langle \bar{\psi}\psi \rangle$$

When $m \to 0$, $m_{\pi} \to 0$. This fact always holds along the RG flow. ('.' Chiral symmetry) π is dominant in the low energy region !

 \uparrow We can never see this in the QCD flow.

Extended RG scheme

XQCD flow is interesting !

1. 2d QCD flow is obtained non-perturbatively.

2. 2d XQCD flow at the 1-loop level is studied

The auxiliary field $\Phi~$ acquires the kinetic term.

 π becomes dominant in the low energy region !

 \uparrow We can never see this in the QCD flow.

Back up

Massless pion

Meson correlator : $\langle \varphi_{\Gamma}^{\dagger}(x)\varphi_{\Gamma}(y)\rangle \quad \varphi_{\Gamma}(x) = \bar{\psi}(x)\Gamma\psi(y)$

Symmetries in RG flow

Assume the gauge-invariant ansatz :

$$S_{\Lambda} = \int d^{2}x \left[-\frac{1}{2} \operatorname{Tr} (\mathbf{A}_{+})_{R} \partial_{-}^{2} (\mathbf{A}_{+})_{R} + \bar{\psi}_{R} (i\partial \!\!\!/ - m_{R}(\Lambda)) \psi_{R} - \frac{g_{R}(\Lambda)}{\sqrt{N_{c}}} \bar{\psi}_{R} \mathbf{A}_{+} \gamma^{+} \psi_{R} + \cdots \right]$$

RG condition :

 $\langle \psi(x)\bar{\psi}(y) \rangle_{\text{exact}} = Z_{\psi}(\Lambda) \langle \psi_R(x)\bar{\psi}_R(y) \rangle$ $g_R(\Lambda) \text{ and } m_R(\Lambda) \text{ are obtained.}$