Thermodynamics and reference scale of SU(3) gauge theory from gradient flow on fine lattices

Masakiyo Kitazawa for FlowQCD Collaboration (Asakawa, Hatsuda, Iritani, Itou, MK, Suzuki) FlowQCD, arXiv:1503.06516

LATTICE2015, 2015/Jul./15, Kobe, Japan

Outline

1. Yang-Mills Gradient flow

- 2. Reference scale and Lattice spacing FlowQCD, arXiv:1503.06516
- 3. Thermodynamics

Yang-Mills Gradient Flow

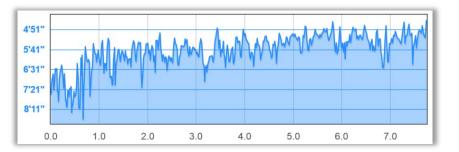
$\partial_t A_\mu = D_\nu G_{\mu\nu}$

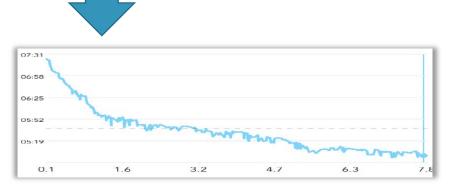
Gradient Flow and Jogging

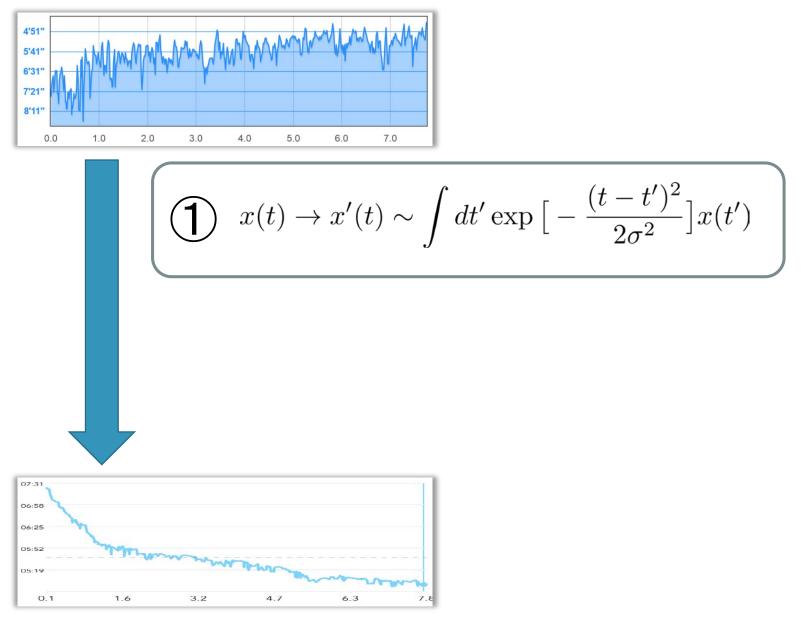
Gradient Flow and Jogging

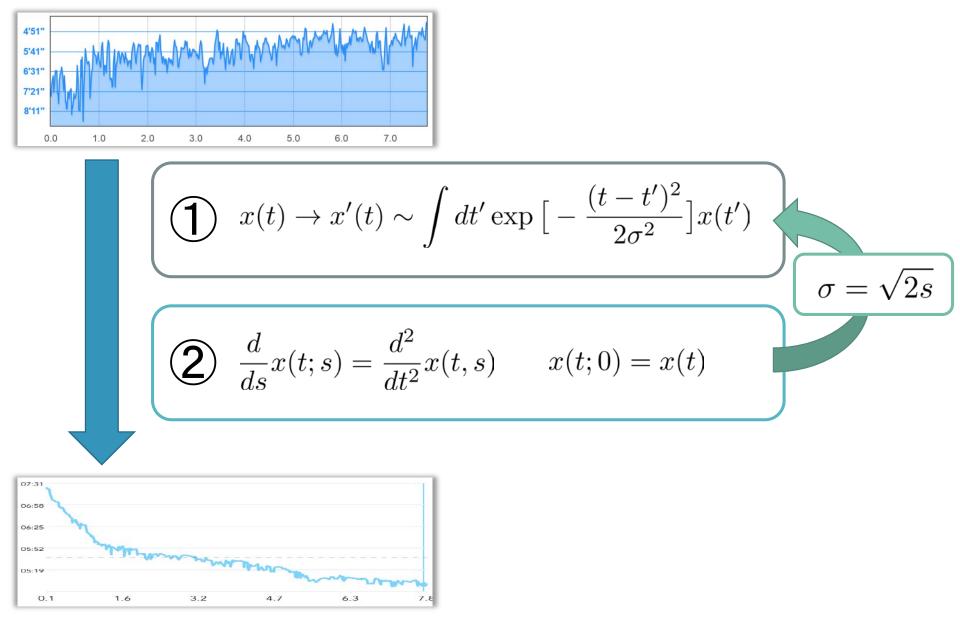
Gradient Flow and Jogging

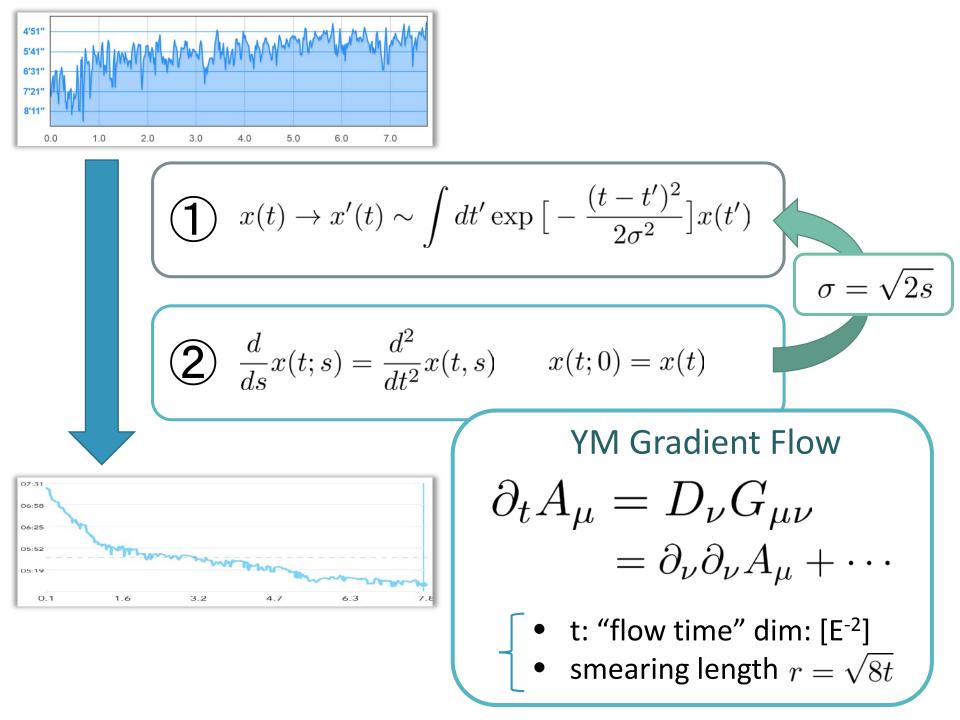




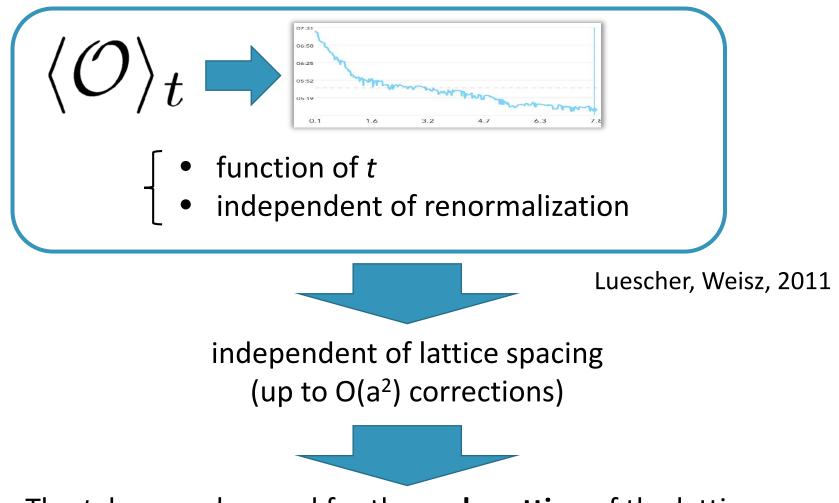








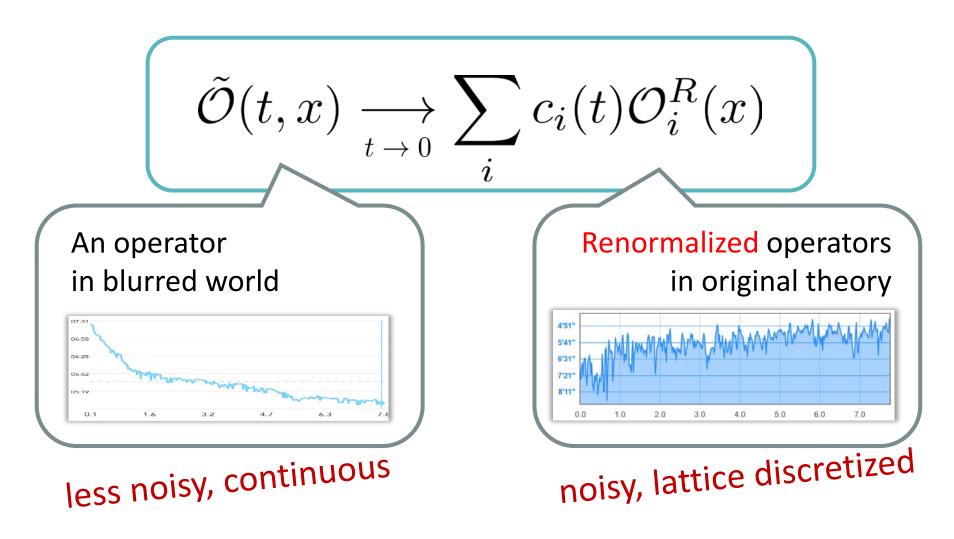
Use of Gradient Flow 1: Observables at Nonzero Flow Time



The *t* dep. can be used for the **scale setting** of the lattice.

Use of Gradient Flow 2: Small Flow Time Expansion

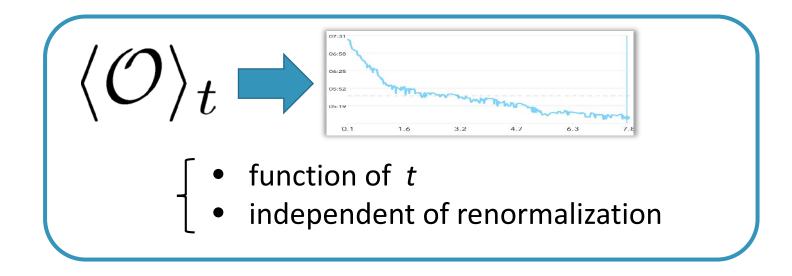
Luescher, Weisz, 2011 Suzuki, 2013



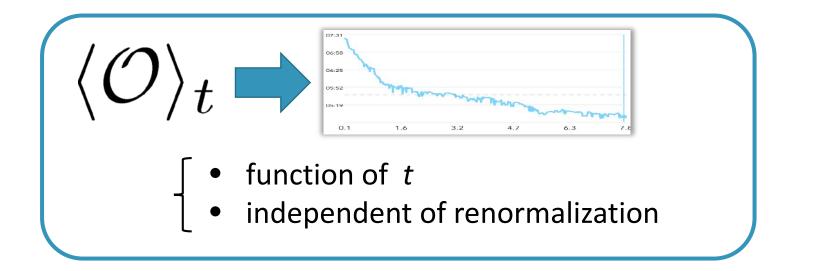
Ex: energy momentum tensor, Suzuki, 2013; FlowQCD, 2014

Reference Scale and Lattice Spacing

Basic Idea



Basic Idea



Choice 1:
$$\mathcal{O}=t^2E(t)$$

Luescher, 2010

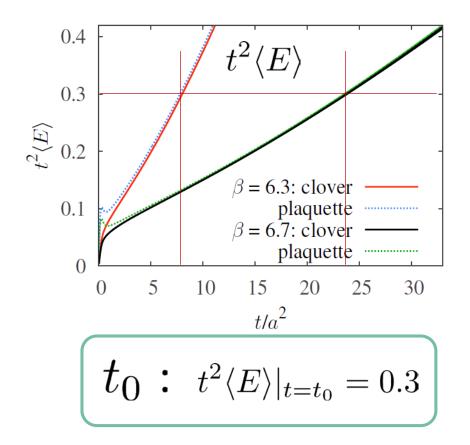
Choice 2:
$$\mathcal{O} = t \frac{d}{dt} t^2 E(t)$$

Budapest-Wuppertal, 2012

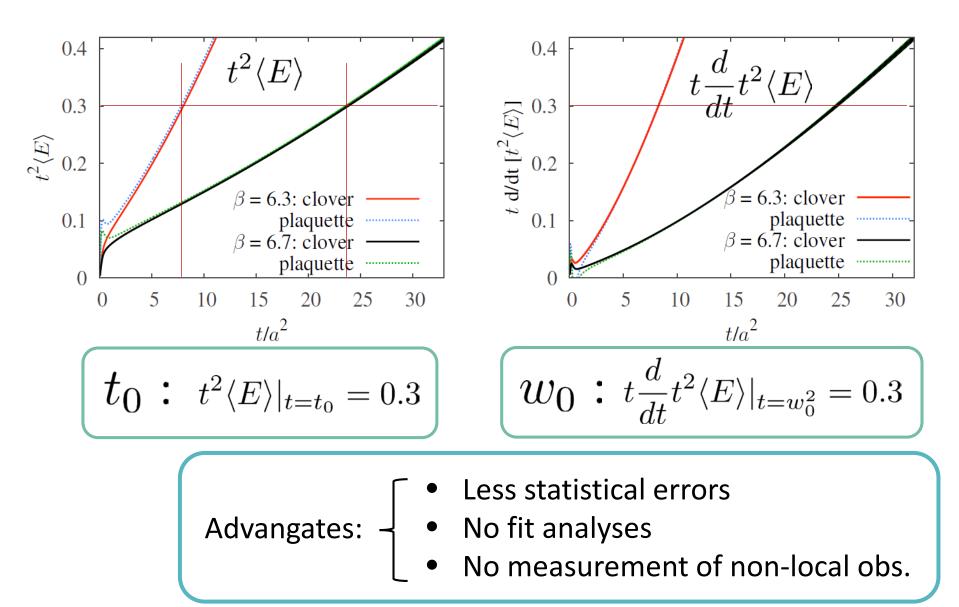
$$E = \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

discretization effect suppressed

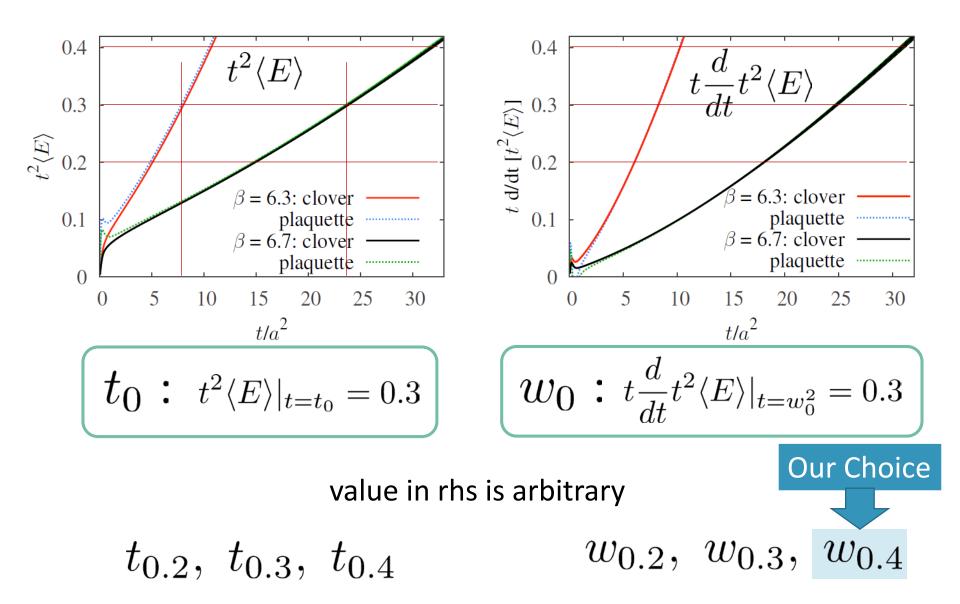
Behavior of t²<E>



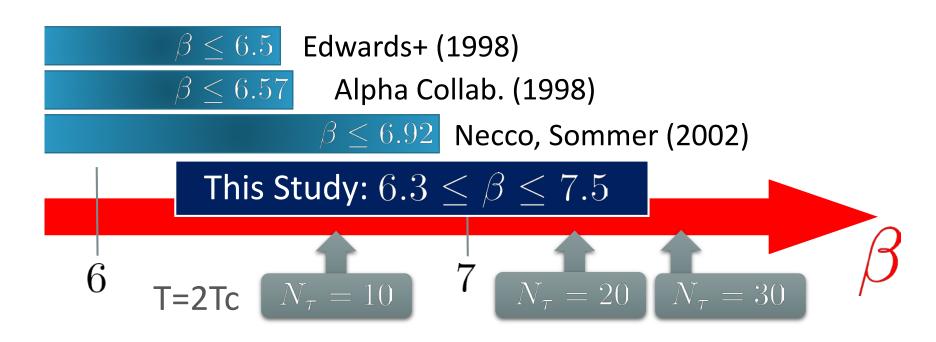
Behavior of t²<E>



Behavior of t²<E>



Lattice Spacing of SU(3) Wilson Action



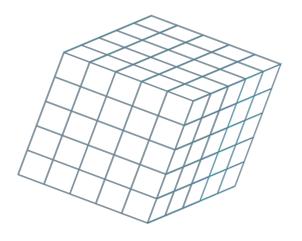
our parametrization for a

$$\log\left(\frac{w_{0.4}}{a}\right)(\beta) = \frac{4\pi^2}{33}\beta - 8.6853 + \frac{37.422}{\beta} - \frac{143.84}{\beta^2}$$

stat. err. < 0.4% / sys. err. < 0.7%

Numerical Setting

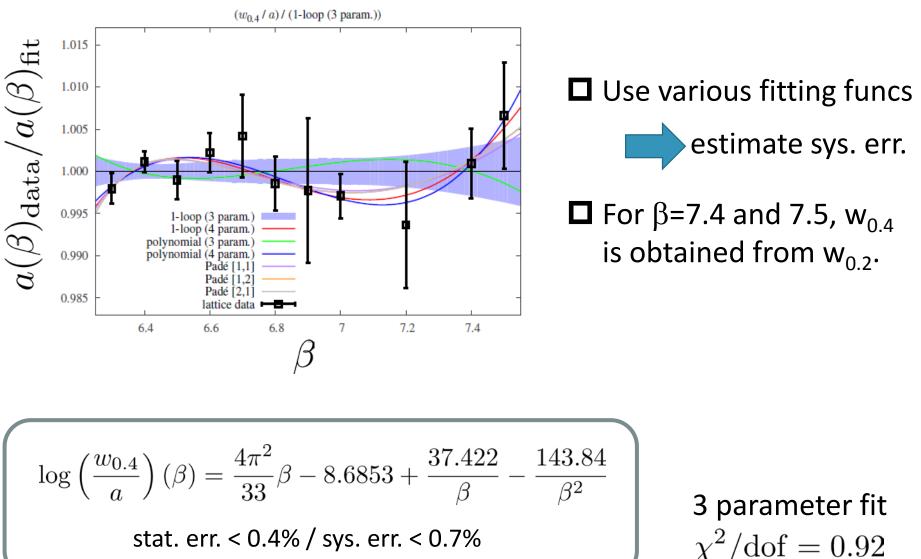
SU(3) YM theory
 Wilson gauge action
 w_{0.4} / w_{0.2} scaling



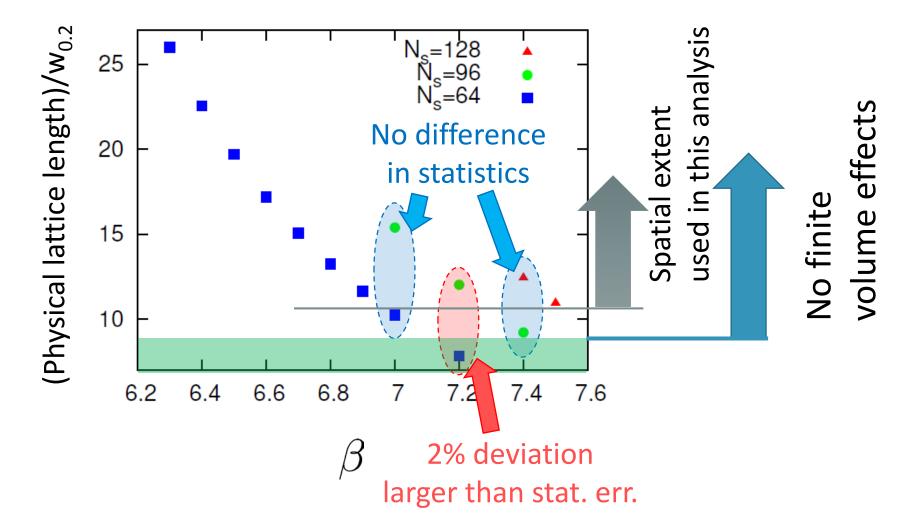
b	size	N_{conf}	b	size	N _{conf}	
6.3	64 ⁴	30	6.9	64 ⁴	30	
6.4	64 ⁴	100	7.0	96 ⁴	60	
6.5	64 ⁴	49	7.2	96 ⁴	53	
6.6	64 ⁴	100	7.4	128 ⁴	40	
6.7	64 ⁴	30	7.5	128 ⁴	60	
6.8	64 ⁴	100				

Each configuration is separated by 1000 updates (HB+OR⁵) BlueGene/Q @ KEK

Parametrization with w_{0.4}

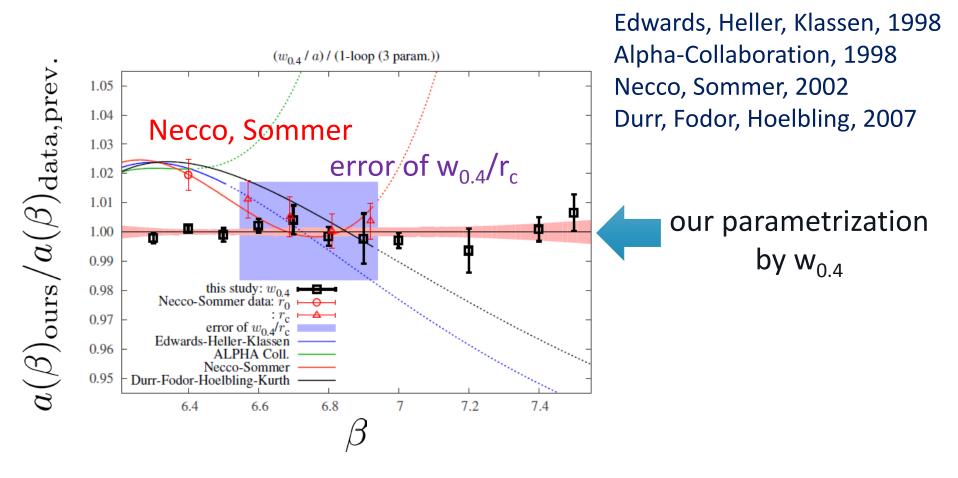


Finite Volume Effects



No finite volume effects within statistics

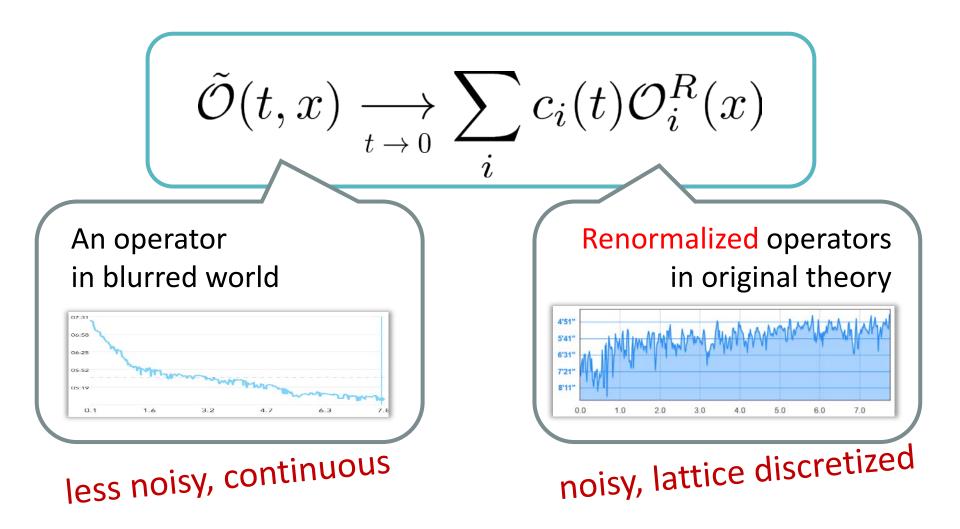
Comparison with Previous Studies



- Parametrizations agree with each other in available ranges.
- Errorbars of our data is smaller than previous ones.

Thermodynamics

Basic Idea: Small Flow Time Expansion



SFTE of Energy-Momentum Tensor

Suzuki, 2013

G gauge-invariant dimension 4 operators

$$U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$$
$$E(t,x) = \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$$

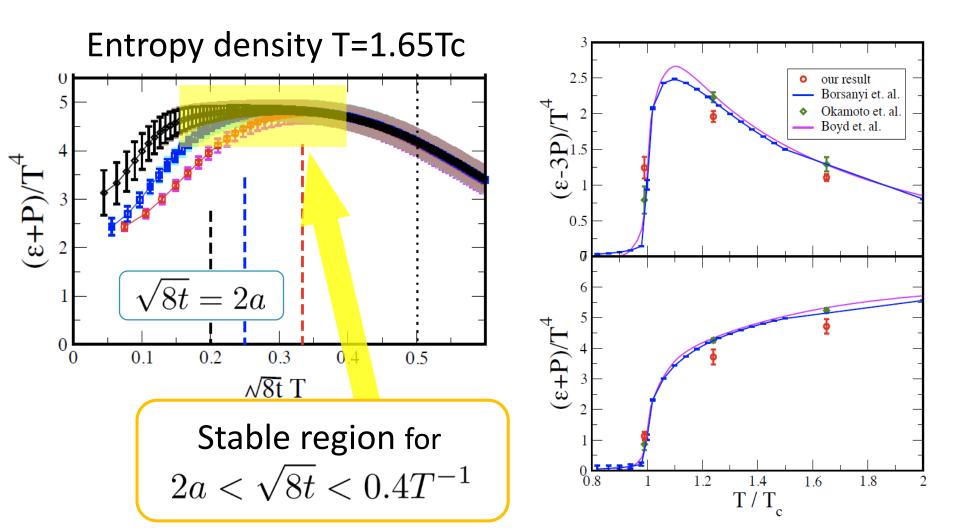
Remormalized EMT

$$T^R_{\mu\nu}(x) = \lim_{t \to 0} \left[\frac{1}{\alpha_U(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t,x)_{\text{subt.}} \right]$$

Suzuki coeffs. $\begin{cases} \alpha_U(t) = g^2 \left[1 + 2b_0 s_1 g^2 + O(g^4) \right] \\ \alpha_E(t) = \frac{1}{2b_0} \left[1 + 2b_0 s_2 g^2 + O(g^4) \right] \end{cases} \quad g = g(\sqrt{8t})$

SU(3) Thermodynamics with Nt=6, 8, 10

FlowQCD, PRD90,011501 (2014)

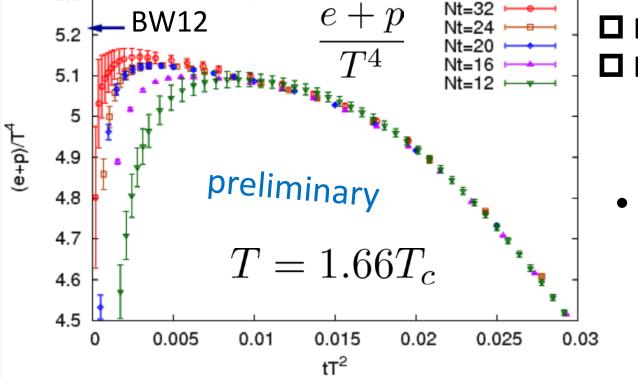


New Results: Thermodynamics (e+p)

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$$

FlowQCD, in prep.

$$T^R_{\mu\nu} = \tilde{T}_{\mu\nu}(t) + O(t)$$



- Existence of O(t) effect
 Linear behavior for $tT^2 < 0.015$ $(\sqrt{8t} < 0.35T^{-1})$
 - t→0 limit is necessary

BW12:Budapest-Wuppertal, 2012

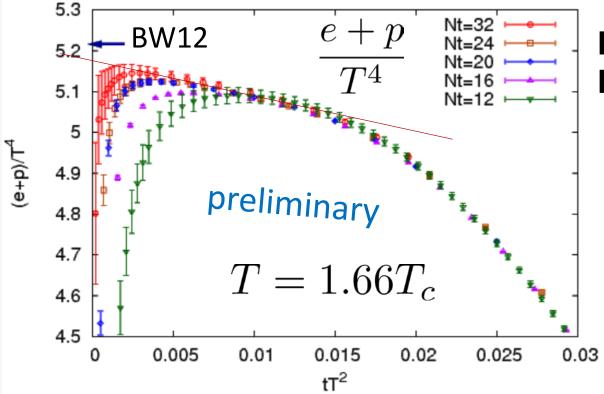
5.3

New Results: Thermodynamics (e+p)

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$$

FlowQCD, in prep.

$$T^R_{\mu\nu} = \tilde{T}_{\mu\nu}(t) + O(t)$$



- Existence of O(t) effect
 Linear behavior for $tT^2 < 0.015$ $(\sqrt{8t} < 0.35T^{-1})$
 - t→0 limit is necessary

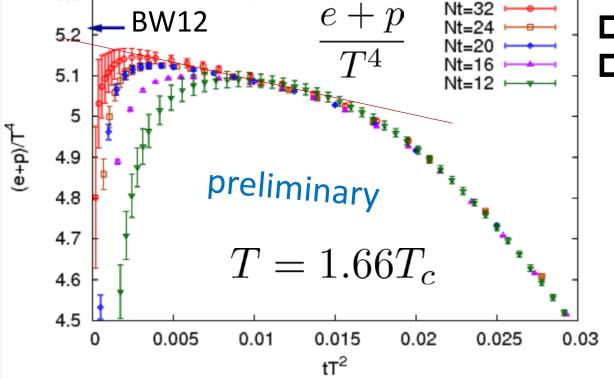
BW12:Budapest-Wuppertal, 2012

New Results: Thermodynamics (e+p)

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$$

FlowQCD, in prep.

$$T^R_{\mu\nu} = \tilde{T}_{\mu\nu}(t) + O(t)$$



Existence of O(t) effect Linear behavior for $tT^2 < 0.015$ $(\sqrt{8t} < 0.35T^{-1})$

• t→0 limit is necessary

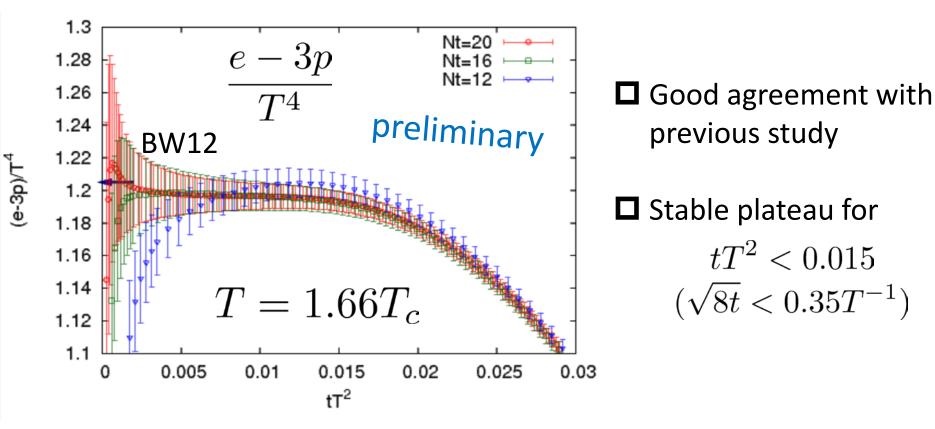
BW12:Budapest-Wuppertal, 2012

5.3

New Results: Thermodynamics (e-3p)

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$$

FlowQCD, in prep.



BW12:Budapest-Wuppertal, 2012

Summary

Accurate lattice spacing of Wilson gauge action for $6.3 < \beta < 7.5$ is now available.

$$\log\left(\frac{w_{0.4}}{a}\right)(\beta) = \frac{4\pi^2}{33}\beta - 8.6853 + \frac{37.704}{\beta} - \frac{144.77}{\beta^2}$$

The EMT defined with gradient flow is nicely applied to the measurement of thermodynamics. The $a \rightarrow 0$ behavior is checked on fine lattices.

- taking t \rightarrow 0 limit is needed.
- application to full QCD \rightarrow E. Itou, 18th, room 403

Summary

Accurate lattice spacing of Wilson gauge action for $6.3 < \beta < 7.5$ is now available.

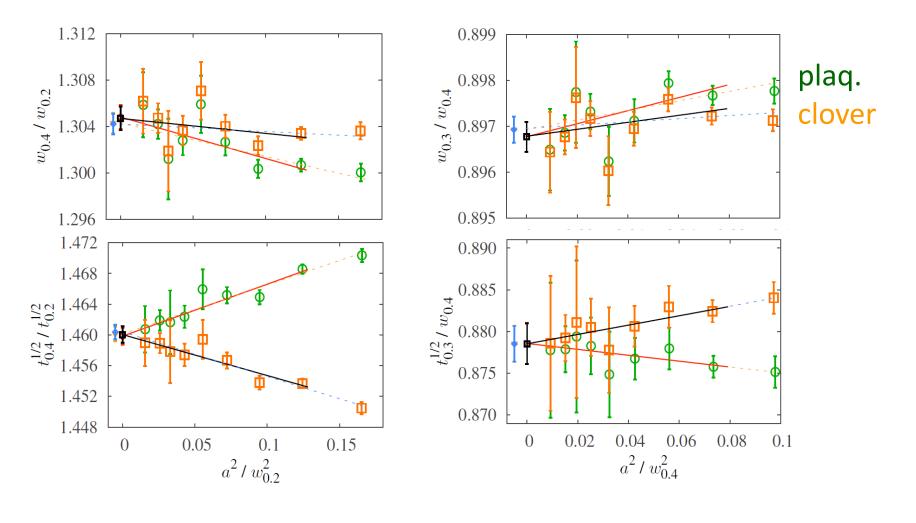
$$\log\left(\frac{w_{0.4}}{a}\right)(\beta) = \frac{4\pi^2}{33}\beta - 8.6853 + \frac{37.704}{\beta} - \frac{144.77}{\beta^2}$$

The EMT defined with gradient flow is nicely applied to the measurement of thermodynamics. The $a \rightarrow 0$ behavior is checked on fine lattices.

- taking t \rightarrow 0 limit is needed.
- application to full QCD \rightarrow E. Itou, 18th, room 403

Backup

Various Reference Scales



$\sqrt{t_{0.4}}/w_{0.4}$	$\sqrt{t_{0.3}}/w_{0.4}$	$\sqrt{t_{0.2}}/w_{0.4}$	$w_{0.3}/w_{0.4}$	$w_{0.2}/w_{0.4}$	$r_c/w_{0.4}$	$r_0/w_{0.4}$	$\sqrt{\sigma}w_{0.4}$	$T_{c}w_{0.4}$	$w_{0.4}\Lambda_{\overline{\mathrm{MS}}}$
1.0164(32)(3)	0.8785(24)(0)	0.6952(18)(2)	0.8968(3)(2)	0.7665(6)(2)	1.328(21)(7)	2.587(45)	0.455(8)	0.285(5)	0.233(19)