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Content of the Talk

@ Tensor Renormalization Group (TRG) formulation of the O(2)
model with a chemical potential

@ Comparison of particle number distributions with the worm
algorithm

© TRG calculation of the thermal entropy and entanglement entropy
in the superfluid (gapless) phase

© Fine structure of the entanglement entropy and its mirror
symmetry with respect to half-filling

© Approximate picture of weakly interacting loops with winding
number one (explanation of a particle-hole symmetry without
fundamental fermionic fields)

© Numerical optimization based on particle number conservation
@ Conclusions

For details see arXiv:1507.01471 fii
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The Tensor Renormalization Group (TRG) Method

@ Exact blocking (spin and gauge, PRD 88 056005)

@ Applies to many lattice models: Ising model, O(2) model, O(3)
model, Principal chiral models, Abelian and SU(2) gauge theories

@ Can be related to (worm) sampling methods (Prokofiev, Svistunov,
Banerjee, Chandrasekharan, Gattringer ...)

@ Solution of sign problems (PRD 89, 016008)

@ Critical exponents (Y.M. PRB 87, 064422, Kadanoff et al. RMP 86)

@ Used to design quantum simulators: O(2) model with a chemical
potential (PRA 90, 063603), Abelian Higgs model on optical
lattices (1503.08354, Alexei Bazavov’s talk, Saturday 9AM 404)

@ Schwinger model: Yuya Shimizu and Yoshinobu Kuramashi, 1
flavor of Wilson fermion, arxiv 1403.0642 Phys. Rev. D 90,
014508 and 074503 (2014).

@ Related method: Mari Carmen Banuls, Krzysztof Cichy, J. Ignacio
Cirac, Karl Jansen, Hana Saito, Matrix Product States for Lattice
Field Theories, arXiv:1310.4118 (Lattice 2013).
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2D O(2) model with chemical potential
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complex action S = By Z CoS(8x,t4+1) — Ox,ty — 1)
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Loop representation:
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In all numerical calculations made here, 53 = 3; = 8
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Worm configurations

=0.1; y=3.0

L —

Figure: Allowed configuration of {n} for a 4 by 32 lattice. The uncovered links
on the grid have n=0, the more pronounced dark lines have |n|=1 and the
wider lines have n=2. The dots need to be identified periodically. The time ﬁ

slice 5, represents a transition between |1100) and |0200).
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TRG approach of the transfer matrix

The partition function can be expressed in terms of a transfer matrix:
Z=TrTk .

The matrix elements of T can be expressed as a product of tensors
associated with the sites of a time slice (fixed t) and traced over the
space indices (PhysRevA.90.063603)

T 2 : (1,1) (2,t) (LX t)
(n1 2, an)(n1’n nL ) o 4 3 ﬁLXFH m ﬂq F71 Flgﬂgné... o nLX 1nLXnLXnLX
n1 n2...nLX

with

nX 1nxnxn’ = \/Inx Bt ﬁt Py 1(Bx) (6 )e(#(nXJrnX))(Sﬁx 1Ny, A+l

The Kronecker delta function reflects the existence of a conserved .
current, a good quantum number (“particle number" ). ]ﬁm
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Coarse-graining of the transfer matrix
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Figure: Graphical representation of the transfer matrix (left) and its
successive coarse graining (right). See PRD 88 056005 and PRA 90, 063603
for explicit formulas.

=
N

O O O

0O 0o O

S
N
o5
=
w
k[\b

L

f

Yannick Meurice (U. of lowa) Near-conformality with the TRG Lattice 2015, Kobe, July 15 7128



Relevant region of the phase diagram

Thermal Entropy

Figure: Left: Mott Insulating “tongues" (0p/dp = 0) immersed in the
superfluid (9p/0u # 0, gapless) phase. There are KT transitions at the tips.
Right: Intensity plot for the thermal entropy of the classical XY model on a
4 x 128 lattice in a small region of the 8- plane. The dark (blue) regions are
close to zero and the light (yellow ochre) regions peak near In 2. ﬁ
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Particle density calculations

The average particle number density is defined as
1 JLnZ
LyL; Ou

0Z /o = LiTe(T'TL=1), with T/ = 9T /0 can be calculated by using
the chain rule (new tensor with exact blocking formula).
A particle number n(i) is associated with each eigenvalue \; of T and

19InZ Y An()

Ly op S )\,L’ '
Probability P(n) for the particle number n:

P(n)= > )\L’/ZAL’
i:n(i)=n

These probabilities can also be calculated directly from histograms
obtained with the worm algorithm (Banerjee and Chandrasekharan, lﬁLﬁ
PRD 81).

p:
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Comparison of the TRG and worm particle number

histograms

B=0.1, p=3
Lx =32, Lt =128
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Figure: Comparison of the particle number distribution P(n) from the worm ﬁ
algorithm and TRG with different Ds.
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Entanglement entropy

We consider the subdivision of the system AB with density matrix
pas = T /Z into two parts A and B (with equal spatial size). We
define the reduced density matrix g4 as

pa = TrgpaB.

We define the entanglement entropy of A with respect to B as the von
Neumann entropy of this reduced density matrix g4. The eigenvalue
spectrum {pa, } of the reduced density matrix can then be used to
calculate the entanglement entropy

Se=—Y_paln(pa)-
i

We use blocking methods until A and B are each reduced to a single

site.
i
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Figure: lllustration of the entanglement entropy calculation. The horizontal
lines represent the traces on the space indices. There are L; of them, the
missing ones being represented by dots. The two vertical lines represent the |
traces over the blocked time indices in A and B.
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Thermal entropy and entanglement entropy for L, = 4

28 29 3 31 3228 29 3 31 32

V1
Figure: Entanglement entropy (EE, dash line) and thermal entropy (TE, solid
line) for 3 =0.1, Ly =4 and L; = 16, 32, 64 and 128. ﬁ
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Level crossings with increasing particle numbers
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Figure: The two lowest energy levels (EL,E; = —In(}\;)) as a function of . for

Ly =4, L; =256, 3 =0.1. As p increases, lines of successive slopes 0, -1,

-2, -3, and -4 are at the lowest level. At each crossing, the thermal entropy

jumps from 0 to In 2. The values of the thermal entropy are shifted vertically

by -0.5 to make the figure readable.

L
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Approximate spectroscopy for Ly = 4 (1507.01471 )

Near . = 2.90, the lowest energy state changes from |0000) to
Q,n=1)= %(|1000> +10100) + |0010) + |0001)) .

The reduced density matrix for A = first two sites and B = last two sites
in the limit where Ly — oo

PA = TI'B‘Q,I’I21><Q,I’7:1|
= (110 +]01)((10] + (01]) + 7 [00) (00)

A n = 2 state becomes the ground state near =2.95. It is in good
approximation a linear superposition of the 6 states with two 0’s and

two 1’s. The two states [1010) and |0101) have a slightly larger
coefficient suggesting weak repulsive interactions. We also have
contributions from states such as [2000) but with small coefficients.  fg
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Particle-hole symmetry

A n = 3 state becomes the ground state near =3.03.

Q,n=3) = %(|o111>+|1o11>+|11o1>+|111o>),

which is |2, n = 1) with 0’s and 1’s interchanged and one can interpret
the 0 as “holes". Finally, near 4=3.10, [1111) becomes the ground
states (with again many small corrections). In general, there is an
approximate mirror symmetry about the “half-filling" situation.

For small 3, the two state approximation (only 0 or 1 at the vertical
lines at each site) is good (is it similar to a quantum XY model?)
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Weakly interacting loops carrying a n = 1 current

B=0.1; u=2.93 B=0.1; u=3.00 B=0.1; u=3.07 B=0.1; u=3.14
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Figure: Worm configurations for ;, =2.93 (n=1), 3.00 (n=2), 3.07 (n=3) and
3.14 (n=4) for 8 = 0.1, Ly = 4 and L; = 256. Almost all the |n|’ s are 0 or 1.
Between most time slices we have n time links carrying a current 1 and

Ly — ntime links carrying no current. In rare occasions, lines merge or cross. ;:
This illustrates the dominance of the states like |[1010) over states like |2000)!

=
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The fine structure for Ly = 4, L; = 256

. . . . . . . . .
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Figure: Entanglement entropy (EE, blue), thermal entropy (TE, green) and
particle density p (red). The thermal entropy has L, = 4 peaks culminating
near In2 ~ 0.69; p goes from 0 to 1 in L, = 4 steps and the entanglement
entropy has an approximate mirror symmetry near half fillings where it peaks.ﬁ
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Similar features for L, = 16 with L; = 1024
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Figure: Entanglement entropy (EE, blue), thermal entropy (TE, green) and

particle density p (red). The thermal entropy has L, = 16 peaks culminating

near In2 ~ 0.69; p goes from 0 to 1 in L, = 16 steps and the entanglement

entropy has an approximate mirror symmetry near half fillings where it peaks.ﬁ
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QCD with chemical potential on S; x S3

QCD at finite chemical potential in a small hyperspherical box Joyce C. Myers
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Figure 1: Quark number (Left) and Polyakov lines (Right) as a function of the chemical potential for QCD
on St x $3. (Right). N=3,Ns=1,m=0,/R=30 (low T).

Figure: From: Simon Hands, Timothy J. Hollowood, Joyce C. Myers, arxiv
1012.0192, Lattice 2010. ﬁ
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Optimization through symmetry (Judah

Unmuth-Yockey (Ph. D. 2016) and James Osborn)

@ The particle number conservation allows a simplified
parameterization of the tensor.

@ For every tensor involved in contraction, one less sum/loop can be
performed.

@ In general, after one iteration, many states possess the same
charge and a state can be labeled by its charge, and its
degeneracy index.

@ We can loop over the charges and treat the degeneracy index
exactly as we treated the tensor indices in HOTRG (the
unoptimized standard method).

@ This gives good results when the number of charges has been
reduced by iteration (near criticality).

@ The initial iteration is delicate. ﬁ
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Initial Python benchmarks

@ After the first couple iterations, the iteration time decreases
drastically with the optimized method.

@ After many iterations (infinite volume) additional iteration time is
negligible.

@ Computing time near the KT transition (8 =1, u = 0).

Time v.s. Iteration Number, 3=1.0, =0

Dbond = 37
Dbond = 41
Dbond = 45
Dbond = 49
HOTRG, Dbond = 49

1Ll

Time (s)

102 . . . ﬁ
0 5 10 15 20

Iteration
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Initial Python benchmarks

@ For a large enough number of states kept at each iteration
(Dpound), the optimized method wins.

Dbond v.s. Time, 3=1.0, u=0.0, L = 2%
10° : : : . :
—e Sparse
e—e HOTRG
10°}
)
2
E 10
E
10!
100 L . . . L
20 30 40 50 60 70 80 L

Dbond ﬁ
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Conclusions

@ The tensor renormalization group formulation allows reliable
calculations of the particle density which can be checked with the
worm algorithm.

@ The TRG method can be used to calculate the thermal entropy
and the entanglement entropy without using the replica trick.

@ At sufficiently large L;, the thermal entropy and the entanglement
entropy show a rich fine structure as a function of the chemical
potential.

@ An approximate picture of weakly interacting loops winding one
around the Euclidean time direction and carrying particle number
one provides a particle-hole symmetry which justifies the mirror
symmetry of the entanglement entropy with respect to half-filling.

@ Particle number conservation allows more efficient TRG
algorithms.

Thanks!! lﬁﬁ
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Particle number distributions at different
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Figure: The particle number distribution P(n) with x taking different values at
the boundary between the Ml and SF phases. For 1 = 2.80 and 2.85, we only
have n = 0. For p = 2.90, 2.95 and 3.0, there are three visible groups of bins. .
With p increasing, the distribution shift to the right with larger most probable ﬁ
particle number.
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Thermal entropy

We consider the system, denoted AB, and later subdivide it into two
parts denoted A and B. The thermal density matrix p4g for the whole
system is

pas=TH/Z . (1)

If the largest eigenvalue of the transfer matrix is non degenerate with
an eigenstate denoted |Q2), we have the pure state limit

lim pag = |2) (Q
Lz—)OO
We will work at finite L; and will deal with the entanglement of thermal

states. In general, the eigenvalue spectrum {pap,} of j4g can then be
used to define the thermal entropy

St =— ZPAB,- In(pas,)- (2)
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The fine structure of the SF phase (Lx = 4)

The fine structure of the SF phase between the MI phases can be
approached by first considering the limit 5; = 0 where the spacial sites
decouple and the restoring 5z = 3; perturbatively. The SF phases are
approximately located near values of u where n* changes. To be
specific, we will consider the example of g = 0.1, Ly = 4, where the
transition occurs near pc = 2.997 - - - when gz = 0. In this limit, we
have 16 degenerate states |0,0,0,0), [1,0,0,0), ..., [1,1,1,1)
which can be organized in “bands" with n =0 (1 state), n=1 (4
states), etc. Below, we call the approximation where the indices inside
the kets are only 0 or 1 the “two-state approximation".
The effect of S5 is to give these bands a width and lift the degeneracy.
The energy levels are defined in terms of the eigenvalues of the
transfer matrix as

Ei = —In(\y). (3)
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