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Content of the Talk

1 Tensor Renormalization Group (TRG) formulation of the O(2)
model with a chemical potential

2 Comparison of particle number distributions with the worm
algorithm

3 TRG calculation of the thermal entropy and entanglement entropy
in the superfluid (gapless) phase

4 Fine structure of the entanglement entropy and its mirror
symmetry with respect to half-filling

5 Approximate picture of weakly interacting loops with winding
number one (explanation of a particle-hole symmetry without
fundamental fermionic fields)

6 Numerical optimization based on particle number conservation
7 Conclusions

For details see arXiv:1507.01471
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The Tensor Renormalization Group (TRG) Method

Exact blocking (spin and gauge, PRD 88 056005)
Applies to many lattice models: Ising model, O(2) model, O(3)
model, Principal chiral models, Abelian and SU(2) gauge theories
Can be related to (worm) sampling methods (Prokofiev, Svistunov,
Banerjee, Chandrasekharan, Gattringer ...)
Solution of sign problems (PRD 89, 016008)
Critical exponents (Y.M. PRB 87, 064422, Kadanoff et al. RMP 86)
Used to design quantum simulators: O(2) model with a chemical
potential (PRA 90, 063603), Abelian Higgs model on optical
lattices (1503.08354, Alexei Bazavov’s talk, Saturday 9AM 404)
Schwinger model: Yuya Shimizu and Yoshinobu Kuramashi, 1
flavor of Wilson fermion, arxiv 1403.0642 Phys. Rev. D 90,
014508 and 074503 (2014).
Related method: Mari Carmen Bañuls, Krzysztof Cichy, J. Ignacio
Cirac, Karl Jansen, Hana Saito, Matrix Product States for Lattice
Field Theories, arXiv:1310.4118 (Lattice 2013).
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2D O(2) model with chemical potential µ

Z =

∫ ∏
(x ,t)

dθ(x ,t)
2π

e−S.

complex action S = − βt̂

∑
(x ,t)

cos(θ(x ,t+1) − θ(x ,t) − iµ)

− βx̂

∑
(x ,t)

cos(θ(x+1,t) − θ(x ,t)).

Loop representation:

Z =
∑
{n}

∏
(x ,t)

In(x,t),x̂ (βx̂ )In(x,t),̂t
(βt̂ )e

µn(x,t),̂t

× δn(x−1,t),x̂+n(x,t−1),̂t ,n(x,t),x̂+n(x,t),̂t
.

In all numerical calculations made here, βx̂ = βt̂ = β
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Worm configurations
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Figure: Allowed configuration of {n} for a 4 by 32 lattice. The uncovered links
on the grid have n=0, the more pronounced dark lines have |n|=1 and the
wider lines have n=2. The dots need to be identified periodically. The time
slice 5, represents a transition between |1100〉 and |0200〉.
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TRG approach of the transfer matrix

The partition function can be expressed in terms of a transfer matrix:

Z = TrTLt .

The matrix elements of T can be expressed as a product of tensors
associated with the sites of a time slice (fixed t) and traced over the
space indices (PhysRevA.90.063603)

T(n1,n2,...nLx )(n
′
1,n
′
2...n

′
Lx
) =

∑
ñ1ñ2...ñLx

T (1,t)
ñLx ñ1n1n′1

T (2,t)
ñ1ñ2n2n′2...

. . .T (Lx ,t)
ñLx−1

ñLx nLx n′Lx

with

T (x ,t)
ñx−1ñx nx n′x

=
√

Inx (βt̂ )In′x (βt̂ )Iñx−1
(βx̂ )Iñx (βx̂ )e(µ(nx+n′x ))δñx−1+nx ,ñx+n′x

The Kronecker delta function reflects the existence of a conserved
current, a good quantum number (“particle number" ).
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Coarse-graining of the transfer matrix

Figure: Graphical representation of the transfer matrix (left) and its
successive coarse graining (right). See PRD 88 056005 and PRA 90, 063603
for explicit formulas.
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Relevant region of the phase diagram
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Figure: Left: Mott Insulating “tongues" (∂ρ/∂µ = 0) immersed in the
superfluid (∂ρ/∂µ 6= 0, gapless) phase. There are KT transitions at the tips.
Right: Intensity plot for the thermal entropy of the classical XY model on a
4× 128 lattice in a small region of the β-µ plane. The dark (blue) regions are
close to zero and the light (yellow ochre) regions peak near ln 2.
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Particle density calculations

The average particle number density is defined as

ρ =
1

LxLt

∂LnZ
∂µ

∂Z/∂µ = LtTr(T′TLt−1), with T′ = ∂T/∂µ can be calculated by using
the chain rule (new tensor with exact blocking formula).
A particle number n(i) is associated with each eigenvalue λi of T and

1
Lt

∂ ln Z
∂µ

=

∑
i λ

Lt
i n(i)∑
i λ

Lt
i

.

Probability P(n) for the particle number n:

P(n) =
∑

i:n(i)=n

λLt
i /

∑
i

λLt
i

These probabilities can also be calculated directly from histograms
obtained with the worm algorithm (Banerjee and Chandrasekharan,
PRD 81).
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Comparison of the TRG and worm particle number
histograms
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Figure: Comparison of the particle number distribution P(n) from the worm
algorithm and TRG with different Ds.
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Entanglement entropy

We consider the subdivision of the system AB with density matrix
ρ̂AB ≡ TLt/Z into two parts A and B (with equal spatial size). We
define the reduced density matrix ρ̂A as

ρ̂A ≡ TrB ρ̂AB.

We define the entanglement entropy of A with respect to B as the von
Neumann entropy of this reduced density matrix ρ̂A. The eigenvalue
spectrum {ρAi} of the reduced density matrix can then be used to
calculate the entanglement entropy

SE = −
∑

i

ρAi ln(ρAi ).

We use blocking methods until A and B are each reduced to a single
site.
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Figure: Illustration of the entanglement entropy calculation. The horizontal
lines represent the traces on the space indices. There are Lt of them, the
missing ones being represented by dots. The two vertical lines represent the
traces over the blocked time indices in A and B.

Yannick Meurice (U. of Iowa) Near-conformality with the TRG Lattice 2015, Kobe, July 15 12 / 28



Thermal entropy and entanglement entropy for Lx = 4
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Figure: Entanglement entropy (EE, dash line) and thermal entropy (TE, solid
line) for β = 0.1, Lx = 4 and Lt = 16, 32, 64 and 128.
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Level crossings with increasing particle numbers
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Figure: The two lowest energy levels (EL,Ei = − ln(λi )) as a function of µ for
Lx = 4, Lt = 256, β = 0.1. As µ increases, lines of successive slopes 0, -1,
-2, -3, and -4 are at the lowest level. At each crossing, the thermal entropy
jumps from 0 to ln 2. The values of the thermal entropy are shifted vertically
by -0.5 to make the figure readable.
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Approximate spectroscopy for Lx = 4 (1507.01471 )

Near µ = 2.90, the lowest energy state changes from |0000〉 to

|Ω,n = 1〉 =
1
2

(|1000〉+ |0100〉+ |0010〉+ |0001〉) .

The reduced density matrix for A = first two sites and B = last two sites
in the limit where Lt →∞

ρ̂A = TrB |Ω,n = 1〉 〈Ω,n = 1|

=
1
4

(|10〉+ |01〉)(〈10|+ 〈01|) +
1
2
|00〉 〈00| .

A n = 2 state becomes the ground state near µ=2.95. It is in good
approximation a linear superposition of the 6 states with two 0’s and
two 1’s. The two states |1010〉 and |0101〉 have a slightly larger
coefficient suggesting weak repulsive interactions. We also have
contributions from states such as |2000〉 but with small coefficients.
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Particle-hole symmetry

A n = 3 state becomes the ground state near µ=3.03.

|Ω,n = 3〉 =
1
2

(|0111〉+ |1011〉+ |1101〉+ |1110〉) ,

which is |Ω,n = 1〉 with 0’s and 1’s interchanged and one can interpret
the 0 as “holes". Finally, near µ=3.10, |1111〉 becomes the ground
states (with again many small corrections). In general, there is an
approximate mirror symmetry about the “half-filling" situation.

For small β, the two state approximation (only 0 or 1 at the vertical
lines at each site) is good (is it similar to a quantum XY model?)
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Weakly interacting loops carrying a n = 1 current
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Figure: Worm configurations for µ =2.93 (n=1), 3.00 (n=2), 3.07 (n=3) and
3.14 (n=4) for β = 0.1, Lx = 4 and Lt = 256. Almost all the |n|’ s are 0 or 1.
Between most time slices we have n time links carrying a current 1 and
Lx − n time links carrying no current. In rare occasions, lines merge or cross.
This illustrates the dominance of the states like |1010〉 over states like |2000〉.
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The fine structure for Lx = 4, Lt = 256
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Figure: Entanglement entropy (EE, blue), thermal entropy (TE, green) and
particle density ρ (red). The thermal entropy has Lx = 4 peaks culminating
near ln 2 ' 0.69; ρ goes from 0 to 1 in Lx = 4 steps and the entanglement
entropy has an approximate mirror symmetry near half fillings where it peaks.
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Similar features for Lx = 16 with Lt = 1024
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Figure: Entanglement entropy (EE, blue), thermal entropy (TE, green) and
particle density ρ (red). The thermal entropy has Lx = 16 peaks culminating
near ln 2 ' 0.69; ρ goes from 0 to 1 in Lx = 16 steps and the entanglement
entropy has an approximate mirror symmetry near half fillings where it peaks.
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QCD with chemical potential on S1 × S3

Figure: From: Simon Hands, Timothy J. Hollowood, Joyce C. Myers, arxiv
1012.0192, Lattice 2010.
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Optimization through symmetry (Judah
Unmuth-Yockey (Ph. D. 2016) and James Osborn)

The particle number conservation allows a simplified
parameterization of the tensor.
For every tensor involved in contraction, one less sum/loop can be
performed.
In general, after one iteration, many states possess the same
charge and a state can be labeled by its charge, and its
degeneracy index.
We can loop over the charges and treat the degeneracy index
exactly as we treated the tensor indices in HOTRG (the
unoptimized standard method).
This gives good results when the number of charges has been
reduced by iteration (near criticality).
The initial iteration is delicate.
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Initial Python benchmarks

After the first couple iterations, the iteration time decreases
drastically with the optimized method.
After many iterations (infinite volume) additional iteration time is
negligible.
Computing time near the KT transition (β = 1, µ = 0).
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Initial Python benchmarks

For a large enough number of states kept at each iteration
(Dbound ), the optimized method wins.
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Conclusions

The tensor renormalization group formulation allows reliable
calculations of the particle density which can be checked with the
worm algorithm.
The TRG method can be used to calculate the thermal entropy
and the entanglement entropy without using the replica trick.
At sufficiently large Lt , the thermal entropy and the entanglement
entropy show a rich fine structure as a function of the chemical
potential.
An approximate picture of weakly interacting loops winding one
around the Euclidean time direction and carrying particle number
one provides a particle-hole symmetry which justifies the mirror
symmetry of the entanglement entropy with respect to half-filling.
Particle number conservation allows more efficient TRG
algorithms.

Thanks!!
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Particle number distributions at different µ
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Figure: The particle number distribution P(n) with µ taking different values at
the boundary between the MI and SF phases. For µ = 2.80 and 2.85, we only
have n = 0. For µ = 2.90, 2.95 and 3.0, there are three visible groups of bins.
With µ increasing, the distribution shift to the right with larger most probable
particle number.
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Thermal entropy

We consider the system, denoted AB, and later subdivide it into two
parts denoted A and B. The thermal density matrix ρ̂AB for the whole
system is

ρ̂AB ≡ TLt/Z . (1)

If the largest eigenvalue of the transfer matrix is non degenerate with
an eigenstate denoted |Ω〉, we have the pure state limit

lim
Lt→∞

ρ̂AB = |Ω〉 〈Ω|

We will work at finite Lt and will deal with the entanglement of thermal
states. In general, the eigenvalue spectrum {ρABi} of ρ̂AB can then be
used to define the thermal entropy

ST = −
∑

i

ρABi ln(ρABi ). (2)
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The fine structure of the SF phase (Lx = 4)

The fine structure of the SF phase between the MI phases can be
approached by first considering the limit βx̂ = 0 where the spacial sites
decouple and the restoring βx̂ = βt̂ perturbatively. The SF phases are
approximately located near values of µ where n? changes. To be
specific, we will consider the example of β = 0.1, Lx = 4, where the
transition occurs near µc = 2.997 · · ·when βx̂ = 0. In this limit, we
have 16 degenerate states |0,0,0,0〉 , |1,0,0,0〉 , . . . , |1,1,1,1〉
which can be organized in “bands" with n = 0 (1 state), n = 1 (4
states), etc. Below, we call the approximation where the indices inside
the kets are only 0 or 1 the “two-state approximation".
The effect of βx̂ is to give these bands a width and lift the degeneracy.
The energy levels are defined in terms of the eigenvalues of the
transfer matrix as

Ei = − ln(λi). (3)

Yannick Meurice (U. of Iowa) Near-conformality with the TRG Lattice 2015, Kobe, July 15 28 / 28


