Cluster expansions and chiral symmetry at large density in 2-color QCDC

T. Tomboulis

Department of Physics and Astronomy UCLA

> Lattice 2015 Kobe, Japan July 14 - 18, 2015

Typical conjectured QCD phase diagram

LGT strong coupling

- $\beta = 0$ monomer-dimer-polymer (baryon loop) representations of PF \Rightarrow alleviates sign problem simulations possible: SU(3), SU(2): (Dagoto, Moreo, Wolff; Karsch, Klaetke, Mütter; Chandrasekharan; Fromm, de Forcrand, Philipsen, Unger, ...)
- strong coupling hopping expansion (heavy quark) (Philipsen et al).
- 0 ≤ small β Truncated 1/d expansion and mean-field analysis: SU(3), SU(2), SU(N): (Nishida, Kawamoto, Miura, Ohnishi, Ohmura, Nakano, ...)
- 0 \leq small β Complete cluster expansion for large μ (Tomboulis)

Any N_c : Phase-diagrams - large μ to chirally restored phase

2-color QCD

Fundamental rep. staggered fermions \Rightarrow Real determinant Enhanced global symmetry at $\mu = 0$: $U(N_f) \times U(N_f) \longrightarrow U(2N_f) \xrightarrow{SB} O(2N_f).$

- Strong-coupling: dimer, mean-field (Daggoto, Moreo, Wolff; Klaetke, Mütter; Chandrasekharan, Jiang; Nishida, Fukushima, Hatsuda, ...)
- Full scale simulations at weak(er) coupling (Hands, Kogut,; Cotter, Giudice, Hands, Skullerud, ...)

$SU(N_c)$: general set-up for small β , large μ expansions

A nonvanishing chemical potential μ (or *T*) introduces an anisotropy between the spacelike and timelike directions.

It can be exploited to set up expansion schemes for large μ :

Fermion spacelike hopping expansion in the measure provided by the timelike fermion action and gauge fields.

Explicit evaluation of timelike propagator (Polyakov gauge) :

$$C(\tau - \tau', \Theta(\mathbf{x}))_{ai,bj} = \delta_{ab} \delta_{ij} [1 - (-1)^{(\tau - \tau')}] \\ \cdot \frac{e^{-i\theta_a(\mathbf{x})(\tau - \tau')/L}}{1 + e^{-i\theta_a(\mathbf{x})}e^{-\mu L}} e^{-\mu(\tau - \tau')} \\ \text{for} \quad (\tau - \tau') > 0, \quad \mu > 0$$

$$C(\tau - \tau', \Theta(\mathbf{x}))_{ai,bj} = -\delta_{ab}\delta_{ij}[1 - (-1)^{|\tau - \tau'|}] \\ \cdot \frac{e^{-i\theta_a(\mathbf{x})[1 - |\tau - \tau'|/L]}}{1 + e^{-i\theta_a(\mathbf{x})}e^{-\mu L}}e^{-\mu[L - |\tau - \tau'|]} \\ \text{for} \quad (\tau - \tau') < 0, \quad \mu > 0.$$

 $U_0(\tau, \mathbf{x}) = \operatorname{diag}(e^{i\theta_1(\mathbf{x})/L}, e^{i\theta_2(\mathbf{x})/L}, \cdots, e^{i\theta_{N_c}(\mathbf{x})/L}) \equiv \exp(i\Theta(\mathbf{x})/L)$

Cluster expansions and chiral symmetry at large density in 2-color QCDC

T. Tomboulis

- Convergence for sufficiently large μ and sufficiently small β. any quark mass.
 (TT, J. Math. Phys. 54,122301 (2013); review: Int. J. Mod. Phys. A, 29, 1445004 (2014))
- Convergence region in μ κ (hopping parameter), i.e. smaller μ for heavier quark mass.

Expectation of any local chirally non-invariant fermion operator $\mathscr{O}(x)$, e.g., $\bar{\psi}(x)\psi(x)$ or diquark operators, vanishes identically term by term in the expansion by the invariance of the measure.

Correlation functions $\langle \mathcal{O}(x)\mathcal{O}(y) \rangle$ then receive nonvanishing contributions arise only from polymers intersecting both sites *x* and *y*.

A straightforward consequence of this fact is that:

$$|\langle \mathscr{O}(\mathbf{x})\mathscr{O}(\mathbf{y})\rangle| < C_0 C^{-|\mathbf{x}-\mathbf{y}|},$$

where C_0 , C are space dimension-dependent constants and |x - y| is the minimum number of bonds connecting the two sites.

In other words, there is clustering of 2-point (and all higher) correlations: global $U(N_f) \times U(N_f)$ symmetry intact for sufficiently large μ , small β .

Resulting picture - Strong coupling regime

Picture essentially that of 'quarkyonic' matter with restored chiral symmetry at high μ (as surmised by large N_c arguments (Pisarsky and Mc Lerran)).

Arbitrary coupling

Can we extend these expansion setup to other value regimes of the gauge coupling?

Write the expectation of general fermionic operator $O[\bar{\psi}, \psi]$ in the form:

$$\langle O \rangle = \int dv(U) \langle O \rangle_F(U) ,$$

where

$$\langle O \rangle_{F}(U) = \frac{1}{Z_{F}(U)} \int D\bar{\psi} D\psi e^{S_{F}(U)} O[\bar{\psi}, \psi],$$

$$Z = \int DU e^{S_{g}(U)} Z_{F}(U), \qquad Z_{F}(U) = \int D\bar{\psi} D\psi e^{S_{F}(U)} = \text{Det} \mathbf{M}(U)$$

$$\text{and} \qquad dv(U) \equiv \frac{dU}{Z} e^{S_{g}(U)} \text{Det} \mathbf{M}(U)$$

is the (normalized) full effective gauge field measure at coupling β .

One may expand the fermion expectation $\langle O \rangle_F(U)$ in a given background gauge field configuration *U* in the same type of expansion as above.

Now this expansion for $\langle O \rangle_F(U)$, in generic gauge field background U and for operators O of bounded support and spatial dimension $d \ge 1$, *converges absolutely, and uniformly in the spatial lattice size, at any temperature T for sufficiently large* μ . Result holds for any choice of N_c , N_f .

The proof, and associated estimates, proceed as in the strong coupling case above except that it is actually *simpler* since no integration over the gauge field is involved engendering additional connectivity among diagrams.

Expansion of $\langle O \rangle_F(U)$ leads to expansion of

$$\langle O \rangle = \int dv(U) \langle O \rangle_F(U) \,.$$

Does this expansion converge?

Convergence of $\langle O \rangle_F(U)$ expansion implies

 $|\langle O \rangle_F(U)| < C_O$

 C_O is an operator- and spacetime dimension-dependent constant, but independent of the background U and the spatial lattice volume.

So

$$|\langle O \rangle| = \int dv(U) |\langle O \rangle_{F}(U)| < C_{O}$$
.

provided dv(U) is real positive

dv(U) is real positive if the fermion determinant $\text{Det}\mathbf{M}(U)$ is real positive.

The fermion determinant is known to be real positive for:

- $N_c = 2$ and fundamental rep. fermions
- any N_c , even N_f and adjoint fermions

Usual chiral condensate order parameter: $O_{\bar{a}q} = \bar{\psi}(x)\psi(x).$

 $N_c = 2$ fundamental fermions diquark condensate: $O_{qq} = \frac{1}{2} \left[\psi^T(x) \tau_2 \psi(x) + \bar{\psi}(x) \tau_2 \bar{\psi}^T(x) \right]$

 $SU(N_c)$ Adjoint fermions diquark condensate:

$$O_{qq}^{\rm ad} = \frac{1}{2} \varepsilon^{ij\dots kl} \left[\psi^{kT}(x) \psi^{l}(x) + \bar{\psi}^{k}(x) \bar{\psi}^{lT}(x) \right]$$

 $U(N_f) \times U(N_f) \longrightarrow SU(2)$ isospin; in particular, condensate breaks $U_B(1)$. Such breaking of the global symmetries engenders superfluidity.

Color symmetry breaking condensate:

$$O_{qq}^{a} = \frac{1}{2} \left[\psi^{T}(x) t^{a} \psi(x) + \bar{\psi}(x) t^{a} \bar{\psi}^{T}(x) \right].$$

Transforms in the adjoint representation of $SU(N_c)$, i.e. as a composite adjoint Higgs field. Breaks color symmetry, as well as global chiral symmetries \longrightarrow color superconductivity.

But we just saw that expansion converges for sufficiently large μ .

 \Rightarrow Global $SU(N_f) \times U(N_f)$ symmetries preserved.

None of the above condensates form at large μ : No Superfluidity/Superconductivity at large μ in theories with real fermion determinant

Is this a lattice artifact? Lattice saturation sets in at large μ (low T)

Possible remedy: partition spatial lattice into cubes of fixed size and "thin-out" quark μ by introducing antiquark $\mu_0 < 0$ on a fraction of the timeline bonds; adjust $\mu/|\mu_0|$ in large volume limit.

 Cluster expansions converging for large μ can be constructed in the strong coupling regime.

In $SU(N_c)$ LGT with staggered fermion these expansions show recovery of the global $U(N_f) \times U(N_f)$ symmetries at large μ . This results in a 'quarkyonic' matter picture.

If superfluidity/superconductivity involving breaking of these symmetries actually realized, the LGT must exhibit a phase transition as the gauge coupling is lowered.

- In theories with real fermion determinant the 'quarkyonic' matter picture can be extended to all coupling.
- Is this large μ picture a lattice artifact? Lattice saturation at large μ (and low T) serious problem to be overcome.