Search for the H-Dibaryon in two flavor Lattice QCD

Parikshit Junnarkar¹
Jeremy Green, Anthony Francis, Thomas Rae, Chuan Miao,
Hartmut Wittig

¹Helmholtz-Institut Mainz,

Johannes Gutenberg Universität Mainz

The 33rd International Symposium on Lattice Field Theory, Kobe, Japan

Outline

- ▶ Brief Introduction
 - ▶ Experimental results and status of lattice calculations.
- ► Lattice methodology
 - ▶ Operators employed
 - ▶ Lattice set up
- ▶ Discussion of results

The H-dibaryon

Perhaps a Stable Dihyperon*

R. L. Jaffe†

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, # Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^P=0^+$ dihyperon (H) at 2150 MeV. Another isosinglet dihyperon (H) with $J^P=1^+$ at 2335 MeV should appear as a bump in AA invariant-mass plots. Production and decay systematics of the H are discussed,

Predicted by R. L. Jaffe (1977) as a six quark bound state using MIT bag model as $[H \sim uuddss]$

$$J = I = 0, S = -2, m_H < 2m_{\Lambda} \sim -80 \text{ MeV}$$

Experimental searches

Stongest Constraint comes from "Nagara" Event which found a double $^6_{\Lambda\Lambda}$ He double-hypernucleus with binding energy

$$B_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$$

The absence of a strong decay $^6_{\Lambda\Lambda}{\rm He} \to ^4{\rm He} + H$ implies,

$$m_H > 2m_{\Lambda} - B_{\Lambda\Lambda}$$

FIG. 2. Photograph and schematic drawing of NAGARA event. See text for detailed explanation.

KEK-E176, Nucl. Phys. A835(207-214)2010

Status of Lattice results

Early attempts (1985 ~ 2003) on quenched lattices gave mixed results.

[Mackenzie et al (1985), Pochinsky et al (1999), Wertzoke-Karsch (2003)]

Status of Lattice results

Early attempts (1985 ~ 2003) on quenched lattices gave mixed results.

[Mackenzie et al (1985), Pochinsky et al (1999), Wertzoke-Karsch (2003)]

Group	Method	N_f	Action	$\rm N_{\rm Vol}$	$m_{\pi}({ m MeV})$	$B_H({ m MeV})$
	2pt	3	clover	3	806	74.6(3.3)(3.4)
NPLQCD		2+1	aclover	4	390	13.2(1.8)(4.0)
			aclover	1	230	-0.6(8.9)(10.3)
				1	1171	84(4)
HALQCD	B-B			3	1015	32.9(4.5)(6.6)
	Potential	3	clover	1	837	37.4(4.4)(7.3)
				1	672	35.6(7.4)(4.0)
				1	469	26(4)
Mainz	2pt	2	clover	1	1000	92(10)(7)
					450	77(11)(7)

Our methodology

Interpolating operators

 Positive parity projected six quark operators at source and sink

$$[abcdef] = \varepsilon^{ijk} \varepsilon^{lmn} (b_i^T C \gamma_5 P_+ c_j) (e_l^T C \gamma_5 P_+ f_m) (a_k^T C \gamma_5 P_+ d_n)$$

$$H^1 = \frac{1}{48} ([sudsud] - [udusds] - [dudsus])$$

$$H^{27} = \frac{1}{48\sqrt{3}} (2[sudsud] + [udusds] + [dudsus])$$

Interpolating operators

 Positive parity projected six quark operators at source and sink

$$[abcdef] = \varepsilon^{ijk} \varepsilon^{lmn} (b_i^T C \gamma_5 P_+ c_j) (e_l^T C \gamma_5 P_+ f_m) (a_k^T C \gamma_5 P_+ d_n)$$

$$H^{\mathbf{1}} = \frac{1}{48} ([sudsud] - [udusds] - [dudsus])$$

$$H^{\mathbf{27}} = \frac{1}{48\sqrt{3}} (2[sudsud] + [udusds] + [dudsus])$$

▶ Momentum projected two-baryon operators at the sink

$$B_{\alpha} = [abc]_{\alpha} = \varepsilon^{ijk} (b_i^T C \gamma_5 P_+ c_j) a_{k\alpha}$$

$$B_1 B_2(\vec{p_1}, \vec{p_2}) = \sum_{\vec{x}, \vec{y}} e^{i\vec{p_1} \cdot \vec{x}} e^{i\vec{p_2} \cdot \vec{y}} B_1^T(\vec{x}) C \gamma_5 P_+ B_2(\vec{y})$$

Operators belonging to BB^1 , BB^8 , BB^{27}

Contractions

An efficient way to contract the six-quark operators into correlation functions is to use a blocking algorithm:

▶ Form blocks of three propagators contracted into a color-singlet at the sink

$$B(\alpha_1, \xi_1', \xi_2', \xi_3') = \epsilon_{c_1, c_2, c_3} (C\gamma_5 P_+)_{\alpha_2 \alpha_3}$$

$$S_l(\xi_1, \xi_1') S_l(\xi_2, \xi_2') S_s(\xi_3, \xi_3')$$

▶ Then sum over all permutations as,

$$[sudsud] = (C\gamma_5 P_+)_{\alpha\beta} \times \epsilon_{c'_1,c'_2,c'_3} \epsilon_{c'_4,c'_5,c'_6} (C\gamma_5 P_+)_{\alpha'_2\alpha'_3} (C\gamma_5 P_+)_{\alpha'_5\alpha'_6}$$

$$\sum_{\sigma_u,\sigma_d,\sigma_s} B(\alpha,\xi'_{\sigma_u(1)},\xi'_{\sigma_d(2)},\xi'_{\sigma_s(3)}) B(\beta,\xi'_{\sigma_u(4)},\xi'_{\sigma_d(5)},\xi'_{\sigma_s(6)})$$

All mode Averaging

Employ low precision propagator solves over multiple sources and compute observable as,

$$\mathcal{O}^{ ext{AMA}} = \mathcal{O}_{ec{x}_0}^{ ext{high prec}} - \mathcal{O}_{ec{x}_0}^{ ext{low prec}} + rac{1}{N_{ec{x}}} \sum_{N_{ec{x}}} \mathcal{O}_{N_{ec{x}}}^{ ext{low prec}}$$

Variance with AMA:

$$\sigma_{\text{AMA}}^2 = \sigma^2 \left(2(1-r) + \frac{1}{N_{\vec{x}}} \right) \quad , \quad r = \text{Corr}(\mathcal{O}_{\vec{x}_0}^{\text{high prec}}, \mathcal{O}_{\vec{x}_0}^{\text{low prec}})$$

All mode Averaging

Employ low precision propagator solves over multiple sources and compute observable as,

$$\mathcal{O}^{ ext{AMA}} = \mathcal{O}_{ec{x}_0}^{ ext{high prec}} - \mathcal{O}_{ec{x}_0}^{ ext{low prec}} + rac{1}{N_{ec{x}}} \sum_{N_{ec{x}}} \mathcal{O}_{N_{ec{x}}}^{ ext{low prec}}$$

Variance with AMA:

$$\sigma_{\text{AMA}}^2 = \sigma^2 \left(2(1-r) + \frac{1}{N_{\vec{x}}} \right) \quad , \quad r = \text{Corr}(\mathcal{O}_{\vec{x}_0}^{\text{high prec}}, \mathcal{O}_{\vec{x}_0}^{\text{low prec}})$$

Ensemble E1

- $m_{\pi} = 1000 \text{ MeV}$
- $L^3 = (2 \text{ fm})^3$
- $m_{\pi}L = 10$
- ▶ 1 high/low precision solve for AMA bias
- $ightharpoonup N_{
 m srcs} = 128$ with low precision solves.
- ▶ Double statistics using P_+ and P_- for forward/backward propagating states.
- ► Total measurements

$$168 \times 128 \times 2 \sim 43000$$

- $ightharpoonup \kappa_s = \kappa_{ud}$ implies no mixing between 1 and 27
- ► Two sets of smearing provide independent operators for GEVP.

Operators on Ensemble E1

- ▶ Operators at the source $H^1(N)$ and $H^1(M)$
- ▶ Operators choices at sink
 - Choice of smearings: Narrow and Medium (medium is noisy)
 - Choice of six-quark and two-baryon operators at different kinematics.
- ▶ Construct various 2×2 correlator matrices to explore ground state.
- Estimate systematic uncertainty as,

$$\chi^{2} = \sum_{t_{i}, t_{j}}^{N} (\overline{G}(t_{i}) - F(t_{i}, A)) C_{ij}^{-1} (\overline{G}(t_{j}) - F(t_{j}, A))$$

Generalized EigenValue Problem

We compute matrix of two point functions as,

$$C_{ij} = \sum_{\vec{x}} \langle \mathcal{O}_i(t_0 + t, \vec{x}) \mathcal{O}^{\dagger}(t_0, \vec{x}_0) \rangle,$$

and solve the generalized eigenvalue problem (GEVP),

$$C_{ij}(t + \Delta t)v_j(t) = \lambda(t)C_{ij}(t)v_j(t)$$

and compute effective masses as,

$$m_{\rm eff} = \frac{-\log\lambda(t)}{\Delta t}$$

Asymptotically dominated by a single exponential

GEVP on E1

Scattering phase shift from Energy levels

The two particle scattering/binding momenta,

$$p^2 = \frac{1}{4} (E^2 - \vec{P} \cdot \vec{P}) - M_{\Lambda}^2$$

is related to scattering phases in the continuum via,

$$p \cot \delta_0(p) = \frac{2}{\gamma L \sqrt{\pi}} \mathcal{Z}_{0,0}^d(1, q^2) \quad q = \frac{pL}{2\pi}$$

[Lüscher (1991), Rummukainen Gottlieb (1995)]

$$\mathcal{Z}_{0,0}^d(1,q^2) = \frac{1}{\sqrt{4\pi}} \left\{ \sum_{q^2 \neq n^2}^{\Lambda} \frac{1}{q^2 - n^2} - 4\pi\Lambda \right\}$$

Use scattering information to locate the pole in the scattering amplitude,

$$\mathcal{A} \propto \frac{1}{p \cot \delta_0(p) - ip}$$
 $p \cot \delta_0(p) = -\frac{1}{a} + \frac{1}{2}r_0p^2 + \dots$

Scattering phase shift of H¹ - Ensemble E1 (Preliminary)

GEVP for H^{27} - Ensemble E1

Scattering phase shift of H²⁷ - Ensemble E1 (Preliminary)

Ensemble E5

- ► $m_{\pi} = 451 \text{ MeV}$
- $L^3 = (2 \text{ fm})^3$
- $m_{\pi}L = 4.6$
- ▶ $N_{\text{cfgs}} = 1990$ gauge configurations.
- ▶ 1 high/low precision solve for AMA bias
- $ightharpoonup N_{
 m srcs} = 32$ with low precision solves.
- ▶ Double statistics using P_+ and P_- for forward/backward propagating states.
- ► Total measurements

$$1990 \times 32 \times 2 \sim 125000$$

 $ightharpoonup \kappa_s > \kappa_{ud}$ implies mixing between 1 and 27

Operators on Ensemble E5

Solve a GEVP with the available operators:

- ▶ Four source operators Narrow(N) and Medium (M) smeared H^1 and H^{27}
- ▶ Choice of six-quark operators $H^1 \& H^{27}$ and $BB^1, BB^8 \& BB^{27}$ with different kinematic combinations. Employ only narrow smeared operators
- ▶ Construct various 4×4 correlator matrices to explore the ground state.

For scattering studies, this is coupled channel scattering problem requiring total 3 parameters.

GEVP on Ensemble E5

Ground state scattering phase shift on E5 (Preliminary)

Conclusions and Outlook

- ▶ Multi-baryon operators provide a better overlap to the ground state.
- At $m_{\pi} = 1000$ MeV, H¹ is bound in finite volume at $\vec{P} = 0$ with $B_H = 92(10)(7)$ MeV.
- At $m_{\pi} = 451$ MeV, H¹ is bound in finite volume at $\vec{P} = 0$ with $B_H = 77(11)(7)$ MeV.
- ▶ In both cases, the existence of the pole in the scattering ampltude is unclear.

Things to pursue...

- ▶ Understand the ground state contibutions from BB^8 .
- ▶ Perform a systematic study of finite volume effects for a reliable determination on the fate of H^1