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Motivation

• Controversy over the SU(3), 12-flavour theory.

• The SU(2), 6-flavour theory is chirally-broken.

Control of the systematics.

Next natural thing to study is the 8-flavour theory.
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How well do we have to control the errors?

2!loop, SU!3" with 12 flavours
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In order to demonstrate the flow from the UV to the IR fixed points...

It is important to choose good observables and strategies.
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Example:  The use of the Twisted Polyakov Loop scheme
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FIG. 12: rσ(u) from the central procedure.
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FIG. 13: Plots for rσ(u) obtained from our procedures for estimating systematic errors. Top left: rσ(u) from simple
polynomial interpolation in β, Eq. (39). Top right: rσ(u) by performing the continuum extrapolation using quadratic
function in (a/L)2. The rest is the same as the central procedure. Bottom left: rσ(u) by performing the continuum
extrapolation using linear function in (a/L)2, with L/a = 7, 8, 10. Bottom right: rσ(u) by performing the continuum
extrapolation using linear function in (a/L)2, with L/a = 6, 7, 8, 10.

Next, we discuss the estimation of systematic effects arising from the β−value (bare-coupling) interpolation and
the continuum extrapolation. For this purpose, we perform the changes in the central procedure. These changes
are carried out independently, i.e., we vary one component in the central procedure, while keeping the other fixed.

We begin by varying the β−interpolation in the central procedure. This is carried out by changing the non-
decreasing fit function in Eq. (36), to the simple polynomial form in Eq. (39) with the constraint of Eq. (40) and

without (L/a=12        L/a = 24) with (L/a=12        L/a=24) 

It is challenging to draw any conclusion from such a “noisy scheme”.

systematics severely underestimated...

C.-J.D.L., K.Ogawa, H.Ohki, E.Shintani, 2012 K.Ogawa, lattice 2013
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The Gradient Flow scheme

• The quantity,                               , is finite when 
expressed in terms of renormalised coupling at 
positive flow time.

• In a colour-twisted box, can define,

                                                      ,

with tree-level improvement. 

• Use the clover operator, as well as the plaquette, 
to extract         . 

• Step scaling at fixed           .
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t > 0 are automatically finite [27]. One can use the expectation value of the energy density,

hE(t)i = 1

4
hG

µ⌫

(t)G
µ⌫

(t)i , (1.1)

where G
µ⌫

(t) is the field strength of the gauge field at flow time t, to give a non-perturbative

definition of the gauge coupling. This idea was applied to set the scale in lattice simula-

tions [18, 28], to tune anisotropic lattices [29] and more recently in a similar context of this

work (finite-size scaling, but using a box with periodic boundary conditions) to compute

the step scaling function in SU(3) with four fermion species [30].

In this paper we investigate the perturbative behavior of the Wilson flow in the

Schrödinger functional. This motivates us to propose a gradient flow coupling

g

2
GF(L) = N�1

t

2hE(t)i = g

2
MS +O(g4MS), (1.2)

with a normalization factor N to be determined later, valid for an arbitrary SU(N) gauge

field coupled (or not) to fermions. Relating t and L the coupling depends only on one

scale, the size of the finite volume box, and therefore can be used for a finite-size scaling

procedure in the same way as the traditional SF coupling.

The paper is organized as follows: in the next section we investigate the perturbative

behavior of hE(t)i in the SF, both in the continuum and on the lattice. Section 3 uses this

information to define the gradient flow coupling in the SF, and to discuss some practical

issues: cuto↵ e↵ects, boundary fields and fermions. In section 4 we investigate this coupling

numerically on a set of lattices in a physical volume of L ⇠ 0.4 fm and finally conclude in

section 5. Details needed for the computation have been summarized in form of appendices:

a summary with some useful notation A, heat kernels B, propagators in the SF C and finally

some practical details on how to integrate the Wilson flow in numerical simulations D.

2 Perturbative behavior of the Wilson flow in the SF

We would like to start this section by recalling the original proposal of using the Wilson

flow and the energy density as a definition for a coupling in gauge theories [18]. Later it

will become clear what role the SF setup plays.

2.1 Generalities

By considering the gauge fields to be functions of an extra flow time t, not to be confused

with Euclidean time, denoted x0, the Wilson flow is defined by the non-linear equation

dB
µ

(x, t)

dt
= D

⌫

G

⌫µ

(x, t) , B

µ

(x, 0) = A

µ

(x) , (2.1)

where

G

µ⌫

= @

µ

B

⌫

� @

⌫

B

µ

+ [B
µ

, B

⌫

] (2.2)

is the field strength. Due to D

⌫

G

⌫µ

⇠ � �SYM[B]
�Bµ

gauge fields along the flow become

smoother, eventually reaching a local minimum of the Yang Mills action: the flow smooths

– 3 –

J
H
E
P
1
0
(
2
0
1
3
)
0
0
8

t > 0 are automatically finite [27]. One can use the expectation value of the energy density,

hE(t)i = 1

4
hG

µ⌫

(t)G
µ⌫

(t)i , (1.1)

where G
µ⌫

(t) is the field strength of the gauge field at flow time t, to give a non-perturbative

definition of the gauge coupling. This idea was applied to set the scale in lattice simula-

tions [18, 28], to tune anisotropic lattices [29] and more recently in a similar context of this

work (finite-size scaling, but using a box with periodic boundary conditions) to compute

the step scaling function in SU(3) with four fermion species [30].

In this paper we investigate the perturbative behavior of the Wilson flow in the

Schrödinger functional. This motivates us to propose a gradient flow coupling

g

2
GF(L) = N�1

t

2hE(t)i = g

2
MS +O(g4MS), (1.2)

with a normalization factor N to be determined later, valid for an arbitrary SU(N) gauge

field coupled (or not) to fermions. Relating t and L the coupling depends only on one

scale, the size of the finite volume box, and therefore can be used for a finite-size scaling

procedure in the same way as the traditional SF coupling.

The paper is organized as follows: in the next section we investigate the perturbative

behavior of hE(t)i in the SF, both in the continuum and on the lattice. Section 3 uses this

information to define the gradient flow coupling in the SF, and to discuss some practical

issues: cuto↵ e↵ects, boundary fields and fermions. In section 4 we investigate this coupling

numerically on a set of lattices in a physical volume of L ⇠ 0.4 fm and finally conclude in

section 5. Details needed for the computation have been summarized in form of appendices:

a summary with some useful notation A, heat kernels B, propagators in the SF C and finally

some practical details on how to integrate the Wilson flow in numerical simulations D.

2 Perturbative behavior of the Wilson flow in the SF

We would like to start this section by recalling the original proposal of using the Wilson

flow and the energy density as a definition for a coupling in gauge theories [18]. Later it

will become clear what role the SF setup plays.

2.1 Generalities

By considering the gauge fields to be functions of an extra flow time t, not to be confused

with Euclidean time, denoted x0, the Wilson flow is defined by the non-linear equation

dB
µ

(x, t)

dt
= D

⌫

G

⌫µ

(x, t) , B

µ

(x, 0) = A

µ

(x) , (2.1)

where

G

µ⌫

= @

µ

B

⌫

� @

⌫

B

µ

+ [B
µ

, B

⌫

] (2.2)

is the field strength. Due to D

⌫

G

⌫µ

⇠ � �SYM[B]
�Bµ

gauge fields along the flow become

smoother, eventually reaching a local minimum of the Yang Mills action: the flow smooths

– 3 –

J
H
E
P
1
0
(
2
0
1
3
)
0
0
8

t > 0 are automatically finite [27]. One can use the expectation value of the energy density,

hE(t)i = 1

4
hG

µ⌫

(t)G
µ⌫

(t)i , (1.1)

where G
µ⌫

(t) is the field strength of the gauge field at flow time t, to give a non-perturbative

definition of the gauge coupling. This idea was applied to set the scale in lattice simula-

tions [18, 28], to tune anisotropic lattices [29] and more recently in a similar context of this

work (finite-size scaling, but using a box with periodic boundary conditions) to compute

the step scaling function in SU(3) with four fermion species [30].

In this paper we investigate the perturbative behavior of the Wilson flow in the

Schrödinger functional. This motivates us to propose a gradient flow coupling

g

2
GF(L) = N�1

t

2hE(t)i = g

2
MS +O(g4MS), (1.2)

with a normalization factor N to be determined later, valid for an arbitrary SU(N) gauge

field coupled (or not) to fermions. Relating t and L the coupling depends only on one

scale, the size of the finite volume box, and therefore can be used for a finite-size scaling

procedure in the same way as the traditional SF coupling.

The paper is organized as follows: in the next section we investigate the perturbative

behavior of hE(t)i in the SF, both in the continuum and on the lattice. Section 3 uses this

information to define the gradient flow coupling in the SF, and to discuss some practical

issues: cuto↵ e↵ects, boundary fields and fermions. In section 4 we investigate this coupling

numerically on a set of lattices in a physical volume of L ⇠ 0.4 fm and finally conclude in

section 5. Details needed for the computation have been summarized in form of appendices:

a summary with some useful notation A, heat kernels B, propagators in the SF C and finally

some practical details on how to integrate the Wilson flow in numerical simulations D.

2 Perturbative behavior of the Wilson flow in the SF

We would like to start this section by recalling the original proposal of using the Wilson

flow and the energy density as a definition for a coupling in gauge theories [18]. Later it

will become clear what role the SF setup plays.

2.1 Generalities

By considering the gauge fields to be functions of an extra flow time t, not to be confused

with Euclidean time, denoted x0, the Wilson flow is defined by the non-linear equation

dB
µ

(x, t)

dt
= D

⌫

G

⌫µ

(x, t) , B

µ

(x, 0) = A

µ

(x) , (2.1)

where

G

µ⌫

= @

µ

B

⌫

� @

⌫

B

µ

+ [B
µ

, B

⌫

] (2.2)

is the field strength. Due to D

⌫

G

⌫µ

⇠ � �SYM[B]
�Bµ

gauge fields along the flow become

smoother, eventually reaching a local minimum of the Yang Mills action: the flow smooths

– 3 –

The Gradient Flow

• “Diffusion” of the gauge fields:

                                                                             

• The radius of diffusion is 

• Local operators are also diffused.
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local

gauge-invariant observables calculated at positive flow time are renormalized quantities.

For simplicity the perturbation expansion is discussed in the continuum theory using

dimensional regularization. The gauge group is taken to be SU(N) and it is assumed that

there are Nf flavours of massless quarks. As a representative case, the observable

E =
1

4
Ga

µνGa
µν (2.1)

– 2 –

J
H
E
P
0
8
(
2
0
1
0
)
0
7
1

where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local

gauge-invariant observables calculated at positive flow time are renormalized quantities.

For simplicity the perturbation expansion is discussed in the continuum theory using

dimensional regularization. The gauge group is taken to be SU(N) and it is assumed that

there are Nf flavours of massless quarks. As a representative case, the observable

E =
1

4
Ga

µνGa
µν (2.1)

– 2 –

J
H
E
P
0
8
(
2
0
1
0
)
0
7
1

and so on. In particular, in D dimensions the leading-order equation implies

Bµ,1(t, x) =

∫

dDy Kt(x − y)Aµ(y), (2.11)

Kt(z) =

∫

dDp

(2π)D
eipze−tp2

=
e−z2/4t

(4πt)D/2
, (2.12)

which shows explicitly that the flow is a smoothing operation. More precisely, the gauge

potential is averaged over a spherical range in space whose mean-square radius in four

dimensions is equal to
√

8t.

The higher-order equations (2.7) can be solved one after another by noting that

Bµ,k(t, x) =

∫ t

0
ds

∫

dDy Kt−s(x − y)Rµ,k(s, y). (2.13)

Recalling eqs. (2.9),(2.10), it is clear that this formula generates tree-like expressions, where

the fundamental field Aµ is attached to the endpoints of the trees.

2.3 Expansion of ⟨E⟩

When the series (2.6) is inserted in

⟨E⟩ =
1

2
⟨∂µBa

ν∂µBa
ν − ∂µBa

ν∂νBa
µ⟩ + fabc⟨∂µBa

νBb
µBc

ν⟩ +
1

4
fabef cde⟨Ba

µBb
νB

c
µBd

ν⟩, (2.14)

a sequence of terms of increasing order in g0 is obtained. The lowest-order term is

E0 =
1

2
g2
0⟨∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νB
a
µ,1⟩ (2.15)

and the terms at the next order are

E1 = g3
0f

abc⟨∂µBa
ν,1B

b
µ,1B

c
ν,1⟩, (2.16)

E2 = g3
0⟨∂µBa

ν,2∂µBa
ν,1 − ∂µBa

ν,2∂νB
a
µ,1⟩. (2.17)

Each of these terms is a power series in the gauge coupling, which may be worked out by

expressing the coefficients Bµ,k(t, x) through the fundamental field Aµ(x) and by expanding

the correlation functions of the latter using the standard Feynman rules.

In practice it is advantageous to pass to momentum space by inserting the Fourier

representations

Ba
µ,1(t, x) =

∫

p
eipxe−tp2

Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
σ(q)Ãc

λ(r), (2.19)

– 4 –
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Yang–Mills gradient flow M. Lüscher

Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and  n in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+  n)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density  uu+  dd of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)

4

Figure taken from M.Luscher, Lattice 2013
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i.e., to leading order the Wilson flow is the heat flow. We also observe that di↵erent

momentum modes do not couple to each other at this order. Together with the fact that

the zero momentum mode B0(0, x0, t) does not contribute to the observable of interest,

E(t) = 1
4Gµ⌫

G

µ⌫

, we can safely neglect the special treatment that the boundary conditions

of the zero momentum mode B0(0, x0, t) would otherwise require in the following discussion.

We have to solve the heat equation respecting the boundary conditions (2.14). This is

easily done by using appropriate heat kernels

B̃

k,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

D(x0, x
0
0, t)Ãk

(p, x00) , (2.19a)

B̃0,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

N (x0, x
0
0, t)Ã0(p, x

0
0) (p 6= 0) . (2.19b)

Since the boundary conditions of the field B̃

µ,1(p, x0, t) are inherited from the boundary

conditions of the heat kernels, we have to choose them with the correct boundary condi-

tions. Heat kernels with either Dirichlet (KD(x, x0, t)) or Neumann (KN (x, x0, t)) boundary

conditions can be constructed from the basic periodic (KP (x, x0, t)) heat kernel in [0, L]

given by

K

P (x, x0, t) =
1

L

X

p

e

�p

2
t

e

ıp(x�x

0)
,

✓

p =
2⇡n

L

; n 2 Z
◆

. (2.20)

Explicit expressions are given in appendix B.

Our observable, the energy density hE(t, x0)i, has an expansion in powers of g0. The

leading contribution is given by

E0(t, x0) = g

2
0

2
h@

µ

B

a

⌫,1@µB
a

⌫,1 � @

µ

B

a

⌫,1@⌫B
a

µ,1i . (2.21)

We are going to split the computation in two parts, one involving only the spatial compo-

nents of G
µ⌫

, and the other involving the mixed time-space components of G
µ⌫

Es

0(t, x0) =
g

2
0

2
h@

i

B

a

k,1@iB
a

k,1 � @

i

B

a

k,1@kB
a

i,1i , (2.22)

Em

0 (t, x0) =
g

2
0

2
h@0Ba

k,1@0B
a

k,1 � @0B
a

k,1@kB
a

0,1i . (2.23)

Inserting for instance expression (2.19) into (2.22) we obtain

Es

0(t, x0) = � g

2
0

2L6

X

p,q

e

�t(p2+q

2)
e

ı(p+q)x
Z

T

0
dx00dy

0
0K

D(x0, x
0
0, t)K

D(x0, y
0
0, t)

⇥
h

p

i

q

i

hÃa

k

(p, x00)Ã
a

k

(q, y00)i � p

i

q

k

hÃa

i

(p, x00)Ã
a

k

(q, y00)i
i

. (2.24)

The final result is obtained inserting the SF gluon propagator [31, 32]. Since our observable

is invariant under gauge transformations of the A
µ

(x) field we will use the Feynman gauge,

where the expression for the gluon propagator turns out to be more easy (for additional

details see appendix C).3

hÃa

i

(p, x0)Ã
b

k

(q, y0)i = L

3
�

ab

�

ik

�

p,�q

1

T

X

p0

s

p0(x0)sp0(y0)

p2 +
�

p0
2

�2 +O(g20) . (2.25)

3
We have checked that the result is independent of the gauge choice.
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the fields over a region of radius
p
8t. The somewhat surprising result of [18, 27] is that

correlation functions made of this smoothed field have a well-defined continuum limit.

In particular the energy density in SU(N) Yang-Mills theory in infinite volume has the

perturbative behavior

hE(t)i = 1

4
hG

µ⌫

G

µ⌫

i = 3(N2 � 1)g2MS

128⇡2
t

2
(1 + c1g

2
MS +O(g4MS)) . (2.3)

At a scale µ = 1/
p
8t, c1 is a numerical constant and gMS(µ) is the renormalized coupling

in the MS scheme. Therefore one can define a running coupling constant ↵(µ) from

t

2hE(t)i = 3(N2 � 1)

32⇡
↵(µ) . (2.4)

These expressions are valid in infinite volume. What about the Schrödinger Functional?

The computation is completely analogous, but we have to impose the correct boundary

conditions to the gauge fields. As we have mentioned in the SF gauge fields are restricted

to a box of dimensions L

3 ⇥ T . They are periodic in the three spatial directions and the

spatial components have Dirichlet boundary conditions at x0 = 0 and x0 = T . We are

going to work exclusively with zero boundary fields, which means

B

µ

(x+ k̂L, t) = B

µ

(x, t) , (2.5)

B

k

(x, t)|
x0=0,T = 0 . (2.6)

The flow equation (2.1) has to be solved maintaining these boundary conditions at all flow

times t. To apply the idea of finite-size scaling, as has previously been done in [23] in a

periodic box, one simply has to run the renormalization scale with the size of the finite

volume box given by L via

µ =
1p
8t

=
1

cL

. (2.7)

Here c is a dimensionless constant that represents the fraction of the smoothing range over

the total size of the box. In this way the flow coupling will not depend on any scale other

than L. The renormalization scheme will depend on the values of c, ⇢ = T/L and1 x0/T

g

2
GF(L) = N�1(c, ⇢, x0/T )t

2hE(t, x0)i
�

�

�

t=c

2
L

2
/8
, (2.8)

where N�1(c, ⇢, x0/T ) will be computed in the next section in order to ensure

g

2
GF = g

2
0 +O(g40) . (2.9)

2.2 Continuum

Our computation follows the lines of [27]. First we consider the modified flow equation

dB
µ

dt
= D

⌫

G

⌫µ

+ ↵D

µ

@

⌫

B

⌫

, B

µ

(x, 0) = A

µ

(x) . (2.10)

1
Note that in the SF the boundary conditions break the invariance under time translations. Therefore

hE(t, x0)i will depend explicitly on x0.
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local

gauge-invariant observables calculated at positive flow time are renormalized quantities.

For simplicity the perturbation expansion is discussed in the continuum theory using

dimensional regularization. The gauge group is taken to be SU(N) and it is assumed that

there are Nf flavours of massless quarks. As a representative case, the observable

E =
1

4
Ga

µνGa
µν (2.1)
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and so on. In particular, in D dimensions the leading-order equation implies

Bµ,1(t, x) =

∫

dDy Kt(x − y)Aµ(y), (2.11)

Kt(z) =

∫

dDp

(2π)D
eipze−tp2

=
e−z2/4t

(4πt)D/2
, (2.12)

which shows explicitly that the flow is a smoothing operation. More precisely, the gauge

potential is averaged over a spherical range in space whose mean-square radius in four

dimensions is equal to
√

8t.

The higher-order equations (2.7) can be solved one after another by noting that

Bµ,k(t, x) =

∫ t

0
ds

∫

dDy Kt−s(x − y)Rµ,k(s, y). (2.13)

Recalling eqs. (2.9),(2.10), it is clear that this formula generates tree-like expressions, where

the fundamental field Aµ is attached to the endpoints of the trees.

2.3 Expansion of ⟨E⟩

When the series (2.6) is inserted in

⟨E⟩ =
1

2
⟨∂µBa

ν∂µBa
ν − ∂µBa

ν∂νBa
µ⟩ + fabc⟨∂µBa

νBb
µBc

ν⟩ +
1

4
fabef cde⟨Ba

µBb
νB

c
µBd

ν⟩, (2.14)

a sequence of terms of increasing order in g0 is obtained. The lowest-order term is

E0 =
1

2
g2
0⟨∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νB
a
µ,1⟩ (2.15)

and the terms at the next order are

E1 = g3
0f

abc⟨∂µBa
ν,1B

b
µ,1B

c
ν,1⟩, (2.16)

E2 = g3
0⟨∂µBa

ν,2∂µBa
ν,1 − ∂µBa

ν,2∂νB
a
µ,1⟩. (2.17)

Each of these terms is a power series in the gauge coupling, which may be worked out by

expressing the coefficients Bµ,k(t, x) through the fundamental field Aµ(x) and by expanding

the correlation functions of the latter using the standard Feynman rules.

In practice it is advantageous to pass to momentum space by inserting the Fourier

representations

Ba
µ,1(t, x) =

∫

p
eipxe−tp2

Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
σ(q)Ãc

λ(r), (2.19)
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Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and  n in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+  n)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density  uu+  dd of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)
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Figure taken from M.Luscher, Lattice 2013
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i.e., to leading order the Wilson flow is the heat flow. We also observe that di↵erent

momentum modes do not couple to each other at this order. Together with the fact that

the zero momentum mode B0(0, x0, t) does not contribute to the observable of interest,

E(t) = 1
4Gµ⌫

G

µ⌫

, we can safely neglect the special treatment that the boundary conditions

of the zero momentum mode B0(0, x0, t) would otherwise require in the following discussion.

We have to solve the heat equation respecting the boundary conditions (2.14). This is

easily done by using appropriate heat kernels

B̃

k,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

D(x0, x
0
0, t)Ãk

(p, x00) , (2.19a)

B̃0,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

N (x0, x
0
0, t)Ã0(p, x

0
0) (p 6= 0) . (2.19b)

Since the boundary conditions of the field B̃

µ,1(p, x0, t) are inherited from the boundary

conditions of the heat kernels, we have to choose them with the correct boundary condi-

tions. Heat kernels with either Dirichlet (KD(x, x0, t)) or Neumann (KN (x, x0, t)) boundary

conditions can be constructed from the basic periodic (KP (x, x0, t)) heat kernel in [0, L]

given by

K

P (x, x0, t) =
1

L

X

p

e

�p

2
t

e

ıp(x�x

0)
,

✓

p =
2⇡n

L

; n 2 Z
◆

. (2.20)

Explicit expressions are given in appendix B.

Our observable, the energy density hE(t, x0)i, has an expansion in powers of g0. The

leading contribution is given by

E0(t, x0) = g

2
0

2
h@

µ

B

a

⌫,1@µB
a

⌫,1 � @

µ

B

a

⌫,1@⌫B
a

µ,1i . (2.21)

We are going to split the computation in two parts, one involving only the spatial compo-

nents of G
µ⌫

, and the other involving the mixed time-space components of G
µ⌫

Es

0(t, x0) =
g

2
0

2
h@

i

B

a

k,1@iB
a

k,1 � @

i

B

a

k,1@kB
a

i,1i , (2.22)

Em

0 (t, x0) =
g

2
0

2
h@0Ba

k,1@0B
a

k,1 � @0B
a

k,1@kB
a

0,1i . (2.23)

Inserting for instance expression (2.19) into (2.22) we obtain

Es

0(t, x0) = � g

2
0

2L6

X

p,q

e

�t(p2+q

2)
e

ı(p+q)x
Z

T

0
dx00dy

0
0K

D(x0, x
0
0, t)K

D(x0, y
0
0, t)

⇥
h

p

i

q

i

hÃa

k

(p, x00)Ã
a

k

(q, y00)i � p

i

q

k

hÃa

i

(p, x00)Ã
a

k

(q, y00)i
i

. (2.24)

The final result is obtained inserting the SF gluon propagator [31, 32]. Since our observable

is invariant under gauge transformations of the A
µ

(x) field we will use the Feynman gauge,

where the expression for the gluon propagator turns out to be more easy (for additional

details see appendix C).3

hÃa

i

(p, x0)Ã
b

k

(q, y0)i = L

3
�

ab

�

ik

�

p,�q

1

T

X

p0

s

p0(x0)sp0(y0)

p2 +
�

p0
2

�2 +O(g20) . (2.25)

3
We have checked that the result is independent of the gauge choice.
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the fields over a region of radius
p
8t. The somewhat surprising result of [18, 27] is that

correlation functions made of this smoothed field have a well-defined continuum limit.

In particular the energy density in SU(N) Yang-Mills theory in infinite volume has the

perturbative behavior

hE(t)i = 1

4
hG

µ⌫

G

µ⌫

i = 3(N2 � 1)g2MS

128⇡2
t

2
(1 + c1g

2
MS +O(g4MS)) . (2.3)

At a scale µ = 1/
p
8t, c1 is a numerical constant and gMS(µ) is the renormalized coupling

in the MS scheme. Therefore one can define a running coupling constant ↵(µ) from

t

2hE(t)i = 3(N2 � 1)

32⇡
↵(µ) . (2.4)

These expressions are valid in infinite volume. What about the Schrödinger Functional?

The computation is completely analogous, but we have to impose the correct boundary

conditions to the gauge fields. As we have mentioned in the SF gauge fields are restricted

to a box of dimensions L

3 ⇥ T . They are periodic in the three spatial directions and the

spatial components have Dirichlet boundary conditions at x0 = 0 and x0 = T . We are

going to work exclusively with zero boundary fields, which means

B

µ

(x+ k̂L, t) = B

µ

(x, t) , (2.5)

B

k

(x, t)|
x0=0,T = 0 . (2.6)

The flow equation (2.1) has to be solved maintaining these boundary conditions at all flow

times t. To apply the idea of finite-size scaling, as has previously been done in [23] in a

periodic box, one simply has to run the renormalization scale with the size of the finite

volume box given by L via

µ =
1p
8t

=
1

cL

. (2.7)

Here c is a dimensionless constant that represents the fraction of the smoothing range over

the total size of the box. In this way the flow coupling will not depend on any scale other

than L. The renormalization scheme will depend on the values of c, ⇢ = T/L and1 x0/T

g

2
GF(L) = N�1(c, ⇢, x0/T )t

2hE(t, x0)i
�

�

�

t=c

2
L

2
/8
, (2.8)

where N�1(c, ⇢, x0/T ) will be computed in the next section in order to ensure

g

2
GF = g

2
0 +O(g40) . (2.9)

2.2 Continuum

Our computation follows the lines of [27]. First we consider the modified flow equation

dB
µ

dt
= D

⌫

G

⌫µ

+ ↵D

µ

@

⌫

B

⌫

, B

µ

(x, 0) = A

µ

(x) . (2.10)

1
Note that in the SF the boundary conditions break the invariance under time translations. Therefore

hE(t, x0)i will depend explicitly on x0.
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Caution for the continuum extrapolation

1-5% extrapolation, but...

Lattice artefacts arise from the action, the observable, and the flow.
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Should improve all of these in principle.

It is important to use two discretisations and check the lattice artefacts.
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The “conventional” continuum extrapolation4
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FIG. 1: Step-scaling functions at various cτ .
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FIG. 1: Step-scaling functions at various cτ .
Require    to be at least 0.45 to control the extrapolation.    
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Assuming we are close to an IRFP...

• The finite-size scaling behaviour is governed by the 
linearlised beta function,

• Integrating from a reference volume,       , at fixed 
lattice spacing,

• At fixed lattice spacing, fit    and     ,  then examine 
whether plateaus against             are observed.

2

I. INTRODUCTION

We have finished generating all the data for L̂ = 6, 8, 10, 12, 16, 20, 24. Presently the L̂ = 32 at β = 4.26 is thermalising,
and we will have (hopefully) about 200 thermalised configurations around the beginning of July, 2015. This point
allows us to look at the lattice step-scaling function for

L̂ = 16 −→ L̂ = 32 (1)

at the remornalised coupling g2 ∼ 5.8. This allows us to further test the quality of the continuum extrapolation in
the IR regime. My estimate is that around the middle of August this year, we will have about 500 configs for this
L̂ = 32 point. Therefore I will start writing the paper soon, and hopefully we can release it by the end of August.

II. UPDATES OF THE STEP-SCALING FUNCTIONS

First, some updates of the old stuff. See Fig. 1. Note that now we have gone even more IR than what we could last
August. Now the plaquette and the clover begin to give incompatible continuum-limit results even at cτ=0.4. I take
it as a signal that we shoudl not go further IR — and of course it is getting super expensive too.

In the next cople of weeks, I will change the fit ansatz for the continuum extrapolation —- from (a/L)2 to (a/L) and
(a/L)3. This is motivated by the the fact that the continuum extrapolation should not just be (a/L)2 when we are
away from the perturbative regime. Since it’s hard to know what it really is, we can vary the formula a bit see what
happens.

III. FINITE-SIZE SCALING A’LA THE NON-TRIVIAL IRFP ANSATZ

Away from the asymptotic-freedom regime, we can linearise the RG equation and obtain

β
(

g2
)

≡ −L̂
dg2

dL̂
= γ

(

g2 − g2
∗

)

, (2)

where L̂ = L/a. Our target is to determine γ and g∗. The values of these two quantities of course vary with g, unless
Eq. (2) is applied to the regime in the vicinity of an IRFP. That is, when g is very close to g∗. In other words, we
can compute γ and g∗ and plot them against g. If our data indicate the existence of an IRFP, then we should see
plateaus of these two quantities against g.

Integrating Eq. (2) from a reference L̂ref to volume L̂, we obtain

g2(L̂) = g2
∗
+
[

g2(L̂ref)− g2
∗

]

(

L̂

L̂ref

)

−γ

. (3)

In other words, we are assuming that at the length scale L̂L, the dynamics is dominated by the IRFP, where there is
no other scale. Of course this will not be true when g2(L̂) is small. But if indeed there is an IRFP at large g2(L̂), we
should see good results and plateaus of g2

∗
and γ. In this note I look at the choices L̂ref = 8 and 10.

So the procedure is to fit g2
∗
and γ using Eq. (3), at various fxied values of the bare coupling (lattice spacing). For

each bare coupling, we know g2(L̂ref) from our simulations —- we have bootstrap samples for this quantity.

First I found that the above strategy does not work for the plaquette discretisation, in the sense that it gives rubbish
results with huge errors. So here I report restuls from the clover only. The plots are in Fig. 2.

The χ2 over dof looks all right. But I don’t think it works well.
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and γ at cτ = 0.450 and 0.500.
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Weak (if any) evidence for plateaus...

Results at two flow times
From the clover discretisation
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Conclusion for this theory

• Necessary to control error to the sub-percentage level.

• Necessary to use two discretisations.
      To check the control of the continuum extrapolation.

• The coupling runs slower than the two-loop prediction.

• If there is an IRFP,              in the gradient-flow scheme.

• However, we do not see an IRFP in our data.

For the study of the running coupling...
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Analysis details

• Study the distribution of the lowest eigenvalue of 
the Dirac operator at zero topological charge.

• Compare to Random Matrix Theory.
        Dyson index = 4.

• Two staggered flavours.
        Eight flavours.

• Two-fold degeneracy from the SU(2) gauge group.
        Compare to Nf=16 RMT.

• Strong taste breaking effects.
        Compare to Nf=4 and 8 RMT.
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Fits to the RMT predictions 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8

z

integrated eigenvalue distribution: am=0.010

a3 Σ = 0.239(06)

χ2/19 = 0.35

295 configurations

Nf=16 RMT
12 x 123, β=1.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25

z

integrated eigenvalue distribution: am=0.010

a3 Σ = 0.059(05)

χ2/19 = 43.2

1143 configurations

Nf=16 RMT
8 x 83, β=1.425

2

I. INTRODUCTION

ḡ2
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a good fit a bad fit
(chiral symmetry restoration?)
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Results: volume dependence

“Thin” symbols indicate bad RMT fits.
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Results: mass dependence
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Discussion

• For          ,  RMT analysis indicates taste breaking 
effects seem to be large.

• For           , RMT analyses at Nf=4, 8, 12,16 lead to 
consistent results.

• The chiral phase transition occurs at              .   
     No visible mass and volume dependences.
     Bulk phase transition.

• Strong taste breaking effects at     as large as 2.
     Seems to be irrelevant for the chiral transition.

• The chiral transition does not look like a first 
order phase transition.
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