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Motivation

® Controversy over the SU(3), | 2-flavour theory.
=2 Control of the systematics.

® The SU(2), 6-flavour theory is chirally-broken.

== Next natural thing to study is the 8-flavour theory.
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Running coupling and linearised beta function in
SU(3) gauge theory with |2 flavours:

Gradient flow scheme with twisted BC and massless fermions
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How well do we have to control the errors?

In order to demonstrate the flow from the UV to the IR fixed points...
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=== |t is important to choose good observables and strategies.
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Example: The use of the Twisted Polyakov Loop scheme

C.-.D.L.,, K.Ogawa, H.Ohki, E.Shintani, 2012 K.Ogawa, lattice 2013
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systematics severely underestimated...

It is challenging to draw any conclusion from such a “noisy scheme”.
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The Gradient Flow scheme

® The quantity, (E(t)) = %<G/ﬂ/(t)GMV(t)>, is finite when
expressed in terms of renormalised coupling at
positive flow time.

® |n a colour-twisted box, can define,
gor(L) = NT'(E(®1)) = gus + O(Gus),

with tree-level improvement.

® Use the clover operator, as well as the plaquette,
to extract (F/(t)).

V8t

: }
® Step scaling at fixed &-=——. ;2
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Caution for the continuum extrapolation

Lattice artefacts arise from the action, the observable, and the flow.

== Should improve all of these in principle.

Open symbol: plaquette; Filled sumbol: clover
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Open symbol: plaquette; Filled sumbol: clover
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== |t is important to use two discretisations and check the lattice artefacts.
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The “conventional” continuum extrapolation
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Require C; to be at least 0.45 to control the extrapolation.
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Assuming we are close to an IRFP..

® The finite-size scaling behaviour is governed by the
linearlised beta function,

2\ __ Adg
B(g°) = LdL

v (9% — g7)

A

® |[ntegrating from a reference volume, L.t at fixed
lattice spacing,

N
: : L
gz(L) — 93 =+ {QQ(Lref) — gf} (z ) .
ref

® At fixed lattice spacing, fit 7 and 9%, then examine
whether plateaus against ¢ 2(Lye;) are observed.
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Results at two flow times

From the clover discretisation
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Weak (if any) evidence for plateaus...
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Conclusion for this theory

For the study of the running coupling...

® Necessary to control error to the sub-percentage level.

® Necessary to use two discretisations.
To check the control of the continuum extrapolation.

® The coupling runs slower than the two-loop prediction.
® |f thereis an IRFP, gf > 0 in the gradient-flow scheme.

® However, we do not see an IRFP in our data.
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Non-thermal phase structure of
SU(2) gauge theory with 8 flavours

The chiral condensate via RMT
Fermion masses 0.005,0.010,and 0.015
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Analysis details

® Study the distribution of the lowest eigenvalue of
the Dirac operator at zero topological charge.

® Compare to Random Matrix Theory.
== Dyson index = 4.

® Two staggered flavours.
== Eight flavours.

® Two-fold degeneracy from the SU(2) gauge group.
== Compare to Nf=16 RMT.

® Strong taste breaking effects.
=== Compare to Nf=4 and 8 RMT.
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Fits to the RMT predictions
2 =VEV/\

integrated eigenvalue distribution: am=0.010
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Results: volume dependence

a° =, fit with Nf=4 RMT using lowest 1 eigenvalue
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“Thin” symbols indicate bad RMT fits.
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Results: mass dependence

a 3, fit with Nf=4 RMT using lowest 1 eigenvalue
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“Thin” symbols indicate bad RMT fits.
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Discussion

® For L =8, RMT analysis indicates taste breaking
effects seem to be large.

® For L > 12,RMT analyses at Nf=4,8, 12,16 lead to
consistent results.

® The chiral phase transition occurs at 5 ~ 1.47.
No visible mass and volume dependences.
Bulk phase transition.

e Strong taste breaking effects at [ as large as 2.
== Seems to be irrelevant for the chiral transition.

® The chiral transition does not look like a first
order phase transition.
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