NLO and NNLO Low Energy Constants for SU(2) Chiral Perturbation Theory

David Murphy Columbia University

The 33rd International Symposium on Lattice Field Theory (Kobe, Japan)

July 16, 2015

D. Murphy (Lattice 2015)

July 16, 2015 1 / 18

BNL and RBRC

Tomomi Ishikawa Taku Izubuchi Chulwoo Jung Christoph Lehner Meifeng Lin Shigemi Ohta (KEK) Taichi Kawanai Christopher Kelly Amarjit Soni Sergey Syritsyn

CERN

Marina Marinkovic

Columbia University

Ziyuan Bai Norman Christ Xu Feng Luchang Jin Bob Mawhinney Greg McGlynn David Murphy Daiqian Zhang

University of Connecticut Tom Blum

Edinburgh University

Peter Boyle Luigi Del Debbio Julien Frison Richard Kenway Ava Khamseh Brian Pendleton Oliver Witzel Azusa Yamaguchi

Plymouth University Nicolas Garron

University of Southampton Jonathan Flynn

Johathan Fijimi Tadeusz Janowski Andreas Juettner Andrew Lawson Edwin Lizarazo Antonin Portelli Chris Sachrajda Francesco Sanfilippo Matthew Spraggs Tobias Tsang

York University (Toronto) Renwick Hudspith

Motivation

- Light pseudoscalar mesons $\pi,\,K,\,\eta$ can be understood as pseudo-Goldstone bosons of chiral symmetry breaking
- $\bullet\,$ Separation of scales suggests effective field theory description where degrees of freedom are pGB's $(\chi \rm PT)$
- To construct $\mathcal{L}_{\chi \text{PT}}$: pick a power-counting scheme and write down, order-by-order, most general Lagrangian containing all $SU(N_f)_L \times SU(N_f)_R$ invariant operators parametrized by unknown coefficients ("low energy constants")
 - ▶ LECs must be determined by fits to lattice or experimental data
 - Non-renormalizable theory with many new LECs at each order!
 - General N_f case: 2 (LO), 11 (NLO), 112 (NNLO), ...
- This talk: fits of RBC-UKQCD DWF data for m_{xy}^2 and f_{xy} to SU(2) NLO and NNLO ${\rm PQ}\chi{\rm PT}$
 - ▶ Include full NNLO corrections (Fortran routines provided by J. Bijnens)
 - ▶ Determine LECs
 - Probe hierarchy of terms and region of applicability of χPT
- Will also discuss χ PT predictions from the NNLO fits, and an extension which includes lattice data for the $I = 2 \pi \pi$ scattering length to better constrain LECs

• Simultaneous chiral/continuum fit to m_{π}^2 , m_K^2 , f_{π} , f_K , and m_{Ω}

- ▶ Ansätze are expansion in m_q , a^2 , L about chiral, continuum, infinite-volume limit:
 - * m_{π}^2 , f_{π} : (NNLO continuum PQ χ PT) + (Δ_{FV}^{NLO}) + ($c_a a^2$) * m_K^2 , f_K : (NLO heavy-meson PQ χ PT) + (Δ_{FV}^{NLO}) + ($c_a a^2$)

 - * m_{Ω} : (linear ansatz in \tilde{m}_q) + (ca^2)
- Work in terms of total quark masses $a\tilde{m}_q = am_q^{\text{bare}} + am_{\text{res}}$
- Match to continuum scaling trajectory by numerically inverting fit to determine $m_i^{\rm phys}$, $m_s^{\rm phys}$ such that m_π/m_Ω and m_K/m_Ω take their physical values
- **3** Extract lattice scales from $a = m_{\Omega}/m_{\Omega^{-}}^{\text{PDG}}$, after correcting m_{Ω} to m_s^{phys}

More detail: [Blum et. al, arXiv:1411.7017]

- Poorly conditioned correlation matrix forces us to perform uncorrelated fits
- Potentially important systematic:
 - ▶ PQ measurements on the same set of field configurations are highly correlated
 - Our PQ data mostly comes from heavy ensembles
- To bound this systematic, we consider weighted fits:

$$\chi_e^2 = \alpha_e \sum_i \left(\frac{y_e^i - f_e^i}{\sigma_e^i}\right)^2, \quad \chi^2 = \sum_e \chi_e^2$$

- Each global fit is performed twice:
 - $\alpha_e = 1$ for all ensembles (PQ measurements treated as uncorrelated)
 - $\alpha_e = 1/N_e$, where N_e is the number of non-degenerate PQ measurements on ensemble e (PQ measurements treated as completely correlated)
- True correlated fit lies between these extremes
- Assign systematic errors using shifts in central values between two fits

Ensemble	Action	β	$L^3 \times T \times L_s$	am_l	am_h	m_{π} (MeV)	a^{-1} (GeV)	L (fm)
24I	DWF+I	2.13	$24^3\times 64\times 16$	0.005	0.04	339.6(1.2)	1.784(5)	2.650(7)
		2.13	$24^3\times 64\times 16$	0.01	0.04	432.2(1.4)		
		2.25	$32^3\times 64\times 16$	0.004	0.03	302.0(1.1)		
32I	DWF+I	2.25	$32^3 \times 64 \times 16$	0.006	0.03	359.7(1.2)	2.382(8)	2.647(9)
		2.25	$32^3\times 64\times 16$	0.008	0.03	410.8(1.5)		
32ID	DWF+ID	1.75	$32^3\times 64\times 32$	0.001	0.046	172.7(9)	1.378(7)	4 573(99)
		1.75	$32^3\times 64\times 32$	0.0042	0.046	250.1(1.2)	1.576(7)	4.070(22)
32I-fine	DWF+I	2.37	$32^3\times 64\times 12$	0.0047	0.0186	370.1(4.4)	3.144(17)	2.005(11)
48I	MDWF+I	2.13	$48^3\times96\times24$	0.00078	0.0362	139.1(4)	1.729(4)	5.468(12)
64I	MDWF+I	2.25	$64^3 \times 128 \times 12$	0.000678	0.02661	139.0(5)	2.357(7)	5.349(16)
32ID-M1	MDWF+ID	1.633	$32^3 \times 64 \times 24$	0.00022	0.0596	117.3(4.4)	0.981(39)	6.429(260)
32ID-M2	MDWF+ID	1.943	$32^3\times 64\times 12$	0.00478	0.03297	401.0(2.3)	2.055(11)	3.067(16)

- (M)DWF: (Möbius) domain wall fermions $(N_f = 2 + 1)$
- $\bullet~ {\rm I(D)}{:}$ Iwasaki (+DSDR) gauge action
- PQ measurements with (21, 21, 28) different m_q^{val} pairs on (24I, 32I, 32ID)
- Fit to subsets of this data: vary cuts on heaviest pseudoscalar mass

Summary of Fits

Stacked histograms of $\Delta_i \equiv 200 \times (y_i - f_i)/(y_i + f_i)$ (% dev. between fit and data):

Unitary Chiral Extrapolation of m_{π}^2

- Unitary m_{π}^2 data, corrected to m_s^{phys} , infinite-volume, and continuum using fit (open symbols are excluded points)
- NLO and NNLO fits completely consistent within statistics
- Need lighter pions and better statistics to unambiguously see chiral logs (still not there)

- Tension between NLO fit and heaviest ensembles
- Suggests NLO χ PT consistent with lattice data up to $m_{\pi} \sim \mathcal{O}(350 \text{MeV})$
- NNLO χPT consistent with full data set

Hierarchy of Terms up to NNLO

Decompose m_{π}^2 and f_{π} by chiral order, normalized by LO:

• Rapidly convergent at physical point:

 $\frac{m_{\pi}^2}{\chi_l} = 1.0000 - 0.0245(41) + 0.0034(10)$ $\frac{f_{\pi}}{f} = 1.0000 + 0.0586(35) - 0.0011(7)$

- NLO and NNLO contributions to f_{π} comparable for $m_{\pi} \sim \mathcal{O}(500 \text{ MeV})$
- Indication that NNLO χ PT has become unreliable

Order	LEC	NLO (370 MeV cut)	NNLO (450 MeV cut)	Order	LEC	NNLO (450 MeV cut)
LO	$B^{\overline{MS}}(\mu = 2 \text{ GeV})$ f	2.804(34) GeV 121.3(1.5) MeV	2.787(39) GeV 121.5(1.6) MeV		$10^{6} \left(\hat{K}_{17}^{(2)} - \hat{K}_{39}^{(2)} \right)$	-7.6(1.1)
	$10^3 \hat{L}_0^{(2)}$	_	1.0(1.1)		$10^{6} \left(K_{18}^{(2)} + 6K_{27}^{(2)} - K_{40}^{(2)} \right)$	19.2(4.7)
NLO	$10^3 \hat{L}_1^{(2)}$	_	-0.62(52)	NNLO	$10^6 \hat{K}_{10}^{(2)}$	-0.9(4.2)
	$10^{3}\hat{L}_{2}^{(2)}$	—	0.06(74)		$10^6 \hat{K}_{(2)}^{(2)}$	-3.2(2.8)
	$10^{3}\hat{L}_{3}^{(2)}$	_	-1.56(87)		$(\hat{z}_{2}^{(2)}) = \hat{z}_{2}^{(2)}$	
	$10^{3}\hat{L}_{4}^{(2)}$	-0.211(79)	-0.56(22)		$10^{6} \left(K_{21}^{(2)} + 2K_{22}^{(2)} \right)$	4.9(4.1)
	$10^{3} \hat{L}_{5}^{(2)}$	0.438(72)	0.60(28)		$10^6 \hat{K}_{22}^{(2)}$	-2.8(1.4)
	$10^3 \hat{L}_6^{(2)}$	-0.175(48)	-0.38(10)		$10^6 \hat{k}^{(2)}$	13(17)
	$10^{3}\hat{L}_{7}^{(2)}$	_	-0.75(27)		10 A ₂₅	1.5(1.7)
	$10^3 \hat{L}_8^{(2)}$	0.594(36)	0.69(13)		$10^{6} \left(K_{26}^{(2)} + 6 \tilde{K}_{27}^{(2)} \right)$	11.2(3.6)

Statistical errors only, from unweighted fits:

- Values for NLO and NNLO LECs are quoted at $\Lambda_{\chi} = 1\,{\rm GeV}$
- LECs have expected hierarchy of sizes
- New LECs which enter into NNLO fits generally have O(25%) or larger statistical errors, but most are resolvable from zero

Unquenched NLO SU(2) LECs

HH

4 5

$$\bar{\ell}_i \equiv \gamma_i l_i(\mu) - \log\left(\frac{m_\pi^2}{\mu}\right)$$

LEC	NLO (370 MeV cut)	NNLO (450 MeV cut)
$\overline{\ell}_1$	_	-0.7(7.2)(2.5)
$\overline{\ell}_2$	_	4.0(6.2)(2.1)
$\overline{\ell}_3$	2.83(19)(2)	3.11(49)(3)
$\overline{\ell}_4$	4.04(8)(2)	3.76(16)(8)
$10^{3}l_{7}$	—	6.6(5.4)(0.1)

- Errors are statistical (left) and correlated systematic (right)
- l_7 is scale independent, and (I believe) previously undetermined
- Gasser/Leutwyler estimate $l_7 \sim 5 \times 10^{-3}$ from $\pi^0 \eta$ mixing

FLAG 2013: [Eur.Phys.J. C74, 2890 (2014)] Colangelo et al.: [Nucl.Phys. B603, 125-179 (2001)]

Gasser/Leutwyler: [Annals Phys. 158, 142 (1984)]

D. Murphy (Lattice 2015)

0123456

FLAG 2013

Colangelo et al.

Gasser/Leutwyler

NLO and NNLO LECs for $SU(2) \chi PT$

FLAG 2013

Colangelo et al.

Gasser/Leutwyler

Some One-Loop SU(2) Predictions

- NNLO fits to m_{π}^2 and f_{π} determine $\overline{\ell}_1$, $\overline{\ell}_2$, and l_7
 - $\bar{\ell}_1, \bar{\ell}_2 \xrightarrow{\text{NLO}} \pi\pi$ scattering
 - ▶ $l_7 \xrightarrow{\text{NLO}} \pi^{\pm} \pi^0$ mass splitting due to up/down mass difference
- Can predict $\pi\pi$ scattering lengths (a_{ℓ}^{I}) and slopes (b_{ℓ}^{I}) , as well as the dimensionless ratio $(m_{\pi^{\pm}}^{2} m_{\pi^{0}}^{2})/(m_{d} m_{u})^{2}$
- For simplicity, focus on s-wave $(\ell = 0)$ scattering lengths

	Prediction	Expt. [Ref.]
$ \begin{bmatrix} m_{\pi} a_0^0 \\ m_{\pi} a_0^2 \\ \left[\left(m_{\pi^{\pm}}^2 - m_{\pi^0}^2 \right) \right] \end{bmatrix} $	$\begin{array}{c} 0.192(14)(7) \\ -0.042(5)(1) \\ 31.5(17)(0.4) \end{array}$	$\begin{array}{c} 0.221(5) \\ -0.043(5) \end{array}$
$\left[\left[(m_d - m_u)^2 \right] \right]_{\text{QCD}}$	51.5(17)(0.4)	

• Taking, e.g. $m_d - m_u = 2.5$ MeV, we predict ~ 15% of $\pi^{\pm} - \pi^0$ mass splitting is due to purely QCD effects

- Dominant contribution is from QED at $\mathcal{O}(m_d m_u)$
- Ref.: [B. Bloch-Devaux, PoS KAON09, 033 (2009)]

D. Murphy (Lattice 2015)

NNLO Fit with Partial a_0^2 Data Set

- Repeat NNLO fit with 450 MeV cut, adding a_0^2 measurements on a subset of ensembles
- $m_{\pi} a_0^2$ ansatz:

(NLO continuum
$$\chi PT$$
) + $(c_a a^2)$ + $(c_h \tilde{m}_h)$

• Factor of 5.4 (7.5) reduction in error on $\overline{\ell}_1$ ($\overline{\ell}_2$)

	NNLO (450 MeV cut)	Including a_0^2
$\overline{\ell}_1$	-0.7(7.2)(2.5)	-3.4(1.5)(0.0)
$\overline{\ell}_2$	4.0(6.2)(2.1)	6.37(86)(11)
$m_{\pi} a_0^0 (\chi PT)$	0.192(14)(7)	0.199(5)(1)
$m_{\pi} a_0^2$ (Data)	-0.042(5)(1)	-0.041(2)(1)

• Fits suggest $\mathcal{O}(5\%)$ discretization error for $a^{-1} = 2 \text{ GeV}$

Conclusions

- We are able to fit SU(2) PQ χ PT with the full NNLO corrections to our data for m_{π}^2 and f_{π} without the need for additional terms or constraints
- We determine 9 NLO LECs, and 8 independent linear combinations of NNLO LECs, in the PQ theory
- Good agreement between unquenched LECs and lattice/phenomenological results reported in the literature
- The SU(2) chiral expansion appears to be very robust:
 - ▶ At the physical light quark mass NLO corrections are O(5%), and NNLO corrections are O(.5%)
 - Lattice data for f_{π} starts to systematically disagree with NLO χ PT for $m_{\pi} \sim \mathcal{O}(350 \text{ MeV})$, although the fit remains consistent with the data to $\mathcal{O}(2-3\%)$
 - NLO and NNLO contributions to f_{π} become comparable in size around $m_{\pi} \sim \mathcal{O}(500 \text{ MeV})$, likely indicating onset of N³LO terms
- Paper based on this work to appear on the arXiv soon

Thank you for your attention!

$\pi\pi$ Scattering on the Lattice

- a_0^I characterizes low energy $\pi \pi$ interaction of isospin I state
- Lüscher's quantization condition (box size L):

$$E_{\pi\pi}^{I} - 2m_{\pi} = -\frac{4\pi a_{0}^{I}}{m_{\pi}L^{3}} \left[1 + c_{1} \left(\frac{a_{0}^{I}}{L} \right) + c_{2} \left(\frac{a_{0}^{I}}{L} \right)^{2} + c_{3} \left(\frac{a_{0}^{I}}{L} \right)^{3} \right] + \mathcal{O}(L^{-7})$$

• Two diagrams contribute to $E_{\pi\pi}^2$

$$\langle O_{\pi\pi}^2(t)^{\dagger} O_{\pi\pi}^2(0) \rangle = 2 \left(D(t) - C(t) \right)$$

 $\stackrel{t \to \infty}{\simeq} A \left(e^{-E_{\pi\pi}^2 t} + e^{-E_{\pi\pi}^2(T-t)} + C \right)$

- I = 0 case harder (noisy vacuum diagram)
- At NLO in χPT , $m_{\pi}a_0^2 \propto (\bar{\ell}_1 + \bar{\ell}_2)$
 - ▶ Sharpen lattice predictions for $\overline{\ell}_1, \overline{\ell}_2$
 - Stabilize NNLO fits with light mass cuts

