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Motivation

@ Light pseudoscalar mesons — 7, K, n — can be understood as pseudo-Goldstone
bosons of chiral symmetry breaking

@ Separation of scales suggests effective field theory description where degrees of freedom
are pGB’s (xPT)

@ To construct Lypr: pick a power-counting scheme and write down, order-by-order,
most general Lagrangian containing all SU(Ny);, x SU(Ny)g invariant operators
parametrized by unknown coefficients (“low energy constants”)

» LECs must be determined by fits to lattice or experimental data
» Non-renormalizable theory with many new LECs at each order!
> General Ny case: 2 (LO), 11 (NLO), 112 (NNLO), ...

@ This talk: fits of RBC-UKQCD DWF data for mfy and fzy to SU(2) NLO and NNLO
PQxPT

> Include full NNLO corrections (Fortran routines provided by J. Bijnens)
> Determine LECs
» Probe hierarchy of terms and region of applicability of xPT

o Will also discuss xPT predictions from the NNLO fits, and an extension which includes
lattice data for the I = 2 7m scattering length to better constrain LECs
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Procedure for SU(2) Global Fits

@ Simultaneous chiral/continuum fit to m2, m%, fr, fx, and mq
> Ansitze are expansion in my, a2, L about chiral, continuum, infinite-volume limit:
* m2, f . ( NNLO continuum PQxPT ) + ( ANG® ) + ( ca?)
* mZ, fi: ( NLO heavy-meson PQxPT ) + ( Agbo )+ (caa?)
* mq: (linear ansatz in 7, ) + ( ca®)
» Work in terms of total quark masses amg = amqb"’“"e + amyes
@ Match to continuum scaling trajectory by numerically inverting fit to determine
mlphy . mP™* such that my, /mg and mg /mq take their physical values
PDG

@ Extract lattice scales from a = mq/mg=", after correcting mq to mfhys

More detail: [Blum et. al, arXiv:1411.7017]
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Procedure for SU(2) Global Fits (cont’d.)

o Poorly conditioned correlation matrix forces us to perform uncorrelated fits
o Potentially important systematic:

> PQ measurements on the same set of field configurations are highly correlated
» Our PQ data mostly comes from heavy ensembles

e To bound this systematic, we consider weighted fits:

2 _ v I N
Xe—aez ol ) X—ZXe

i

e Each global fit is performed twice:

> a. =1 for all ensembles (PQ measurements treated as uncorrelated)
> a. = 1/N., where N, is the number of non-degenerate PQ measurements on
ensemble e (PQ measurements treated as completely correlated)

o True correlated fit lies between these extremes

o Assign systematic errors using shifts in central values between two fits
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Summary of Ensembles

Ensemble Action B8 L*x T x Ly amy amy, m, (MeV) | a~! (GeV) L (fm)
3 s
ol pwEil | 213 24 x64x16 0005 0.04 | 8396(12) | zge | g6s007)
2.13 243 x 64 x 16 0.01 0.04 432.2(1.4)
2.25 323 x 64 x 16 0.004 0.03 302.0(1.1)
321 DWF+L | 995 323 x64x16  0.006 0.03 | 350.7(1.2) | 2:382(8) | 2.647(9)
2.25 323 x 64 x 16 0.008 0.03 410.8(1.5)
3
421D DWEFIp | 175 82°x64x32 0001 0046 | 17270) |y aren | garaa

175 323 x64x32 00042  0.046 | 250.1(1.2)
32I-fine DWF+I | 237 32°x64x12 00047  0.0186 | 370.1(4.4) | 3.144(17) | 2.005(11)
481 MDWF+I | 2.13 48 x96x24  0.00078 0.0362 | 139.1(4) | 1.729(4) | 5.468(12)
641 MDWF+I | 225 64°x 128 x 12 0.000678 0.02661 | 139.0(5) | 2.357(7) | 5.349(16)
32ID-M1 | MDWF+ID | 1.633 32° x 64 x24  0.00022  0.0596 | 117.3(4.4) | 0.981(39) | 6.429(260)
32ID-M2 | MDWF+ID | 1.943 32° x 64 x 12 0.00478  0.03297 | 401.0(2.3) | 2.055(11) | 3.067(16)

(M)DWE: (Mébius) domain wall fermions (Ny =2+ 1)

I(D): Iwasaki (+DSDR) gauge action

PQ measurements with (21,21, 28) different m;'al pairs on (241, 321, 32ID)
o Fit to subsets of this data: vary cuts on heaviest pseudoscalar mass
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Summary of Fits

Stacked histograms of A; =200 X (y; — f;)/(yi + fi) (% dev. between fit and data):

1601 X°/dof = 0.25 = 160 x°/dof = 0.36 = 17 1600 x°/dof = 1.14 = 17
s ' o
=120 =) = =120 = /=
= = fr| Z 3 fx
S 80 =l S S 80 = 1120
10 10
Q3 -2 -1 0 1 2 3 93 -2 -1 0 1 2 3 93 -2 -1 0 1
A (%)

A (%)

A (%)
(b) NLO, 370 MeV cut

(¢) NLO, 450 MeV cut

(a) NLO, 260 MeV cut

1600 X2 /dof = 0.21 - 1601 X2 /dof = 0.29 -
- mi;
=120 =l =
E =/fx| 2
O O

(d) NNLO, 370 MeV cut (e) NNLO, 450 MeV cut

o Generally observe sub-percent accuracy e “Bad” fit (c) has O(2 — 3%) outliers
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Unitary Chiral Extrapolation of m2
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mB(p = 3GeV) [GeV] mBS(u = 3GeV) [GeV]
(a) NLO, 370 MeV cut (b) NNLO, 450 MeV cut

e Unitary m2 data, corrected to mP", infinite-volume, and continuum using fit
(open symbols are excluded points)

e NLO and NNLO fits completely consistent within statistics

o Need lighter pions and better statistics to unambiguously see chiral logs (still
not there)
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Unitary Chiral Extrapolation of f;
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(a) NLO, 370 MeV cut (b) NNLO, 450 MeV cut

o Tension between NLO fit and heaviest ensembles
o Suggests NLO xPT consistent with lattice data up to m. ~ O(350MeV)

o NNLO xPT consistent with full data set

and NNLO L
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Hierarchy of Terms up to NNLO

Decompose m2 and f, by chiral order, normalized by LO:

m, (MeV) m, (MeV)

1 2100 200 300 400 500 1 4100 200 300 400 500

1.0 L 12 i

0.8 ! 10 :
= ! ~ 0.8 !
= 06 I -~ '
g ; Z 06 3
e 04 ! = !
£ . < 04 !

0-2 | 0.2

0.0 0.0 '

-O%.O 20 40 60 80 100 120 14.0 _0%‘0 20 40 6.0 80 100 12.0 14.0
m[/m}Jh_w ml/m})h):»

e Rapidly convergent at physical point: e NLO and NNLO contributions to fr
) comparable for m; ~ O(500 MeV)

M
o 1.0000 — 0.0245(41) + 0.0034(10) o Indication that NNLO xPT has

1 become unreliable
7” = 1.0000 + 0.0586(35) — 0.0011(7)
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Partially Quenched SU(2) LECs

Statistical errors only, from unweighted fits:

Order LEC NLO (370 MeV cut) | NNLO (450 MeV cut) Order LEC NNLO (450 MeV cut)
Lo BYS (4 =2GeV) 2.804(34) GeV 2.787(39) GeV 108 (1‘(}? -k -7.6(1.1)
i 121.3(1.5) MeV 121.5(1.6) MeV e e

10°1%) Lo(L1) 10° (Km + 6K, — Kj, ) 19.2(4.7)
1oL - -062(52) 109K -0.9(4.2)
10°L; — 0.06(74 6 7-(2
WL — 1 56((/87)) NNLO 10°K5y) -3.2(2.8)
Py . 5 7(2 07 (2
NLO 10022 ~0.211(79) -0.56(22) 100 (K + 2Kk 4.9(4.1)
10°L? 0.438(72) 0.60(28) 108 @ 2.8(1.4)
10°1? -0.175(48) -0.38(10) 5~ 13
1051® 0.751 10° K33 1.3(1.7)
$ -0.75(27) 5 (72 4 g i@
10°L 0.594(36) 0.69(13) 10° (K26 + 6Ky7 ) 11.2(3.6)

@ Values for NLO and NNLO LECs are quoted at A, =1GeV
LECs have expected hierarchy of sizes

New LECs which enter into NNLO fits generally have O(25%) or larger
statistical errors, but most are resolvable from zero




Unquenched NLO SU(2) LECs

él 52 _ 2
j— us
I NNLO (450 MeV cut) NNLO (450 MeV cut) H
LEC | NLO (370 MeV cut) | NNLO (450 MeV cut)
N Colangelo et. al Colangelo et al. 7 0.7(7.2)(2.5)
I — 4.0(6.2)(2.1)
[ Gasser/Leutwyler Gasser/Leutwyler s 2.83(19)(2) 3.11(49)(3)
A 1.04(8)(2) 3.76(16)(8)
5050 510 N 10 10°l; — 6.6(5.4)(0.1)
7, 7, o Errors are statistical (left)
H NLO (370 MeV cut) NLO (370 MeV cut) and correlated systematic
8] NNLO (450 MeV cut) NNLO (450 MeV cut) (right)
@ I; is scale independent, and
[EVAE) FLAG 2013 FLAG 2013 ] .
(I believe) previously
|——e—— Colangelo et al. Colangelo et al. undetermined
|—e—— Gasser/Leutwyler Gasser/Leutwyler o Gasser/Leutwyler estimate
01323456 3 5 lr ~5x 1073 from 7% — g

mixing

FLAG 2013: [Eur.Phys.J. C74, 2890 (2014)]
Colangelo et al.: [Nucl.Phys. B603, 125-179 (2001)]
NL

Gasser/Leutwyler: [Annals Phys. 158, 142 (1984)]




Some One-Loop SU(2) Predictions

e NNLO fits to m,2r and fr determine 21, Zg, and 7
> Z1, 22 1&0 7 scattering
> 7 I\E? 7t — 70 mass splitting due to up/down mass difference
o Can predict 77 scattering lengths (a/) and slopes (b)), as well as the
dimensionless ratio (m2y — m2o)/(mq — mu)?

e For simplicity, focus on s-wave (¢ = 0) scattering lengths

Prediction | Expt. [Ref.]

mray 0.192(14)(7) 0.221(5)

mrag -0.042(5)(1) -0.043(5)

[(m”i_m’ﬂ)] 31.5(17)(0.4) —
(ma = mu) QCD

o Taking, e.g. mq — ma = 2.5 MeV, we predict ~ 15% of 7 — 7° mass splitting is
due to purely QCD effects

e Dominant contribution is from QED at O(mgq — my)

Ref.: [B. Bloch-Devaux, PoS KAONO09, 033 (2009)]
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NNLO Fit with Partial a3 Data Set

@ Repeat NNLO fit with 450 MeV cut, adding a2
measurements on a subset of ensembles

@ my a(z, ansatz:

(NLO continuum xPT) + (coa?) + (chimn)

@ Factor of 5.4 (7.5) reduction in error on 7 (2)

NNLO (450 MeV cut)

Including a3

Z‘l
[

-0.7(7.2)(2.5)
4.0(6.2)(2.1)

-3.4(1.5)(0.0)
6.37(86)(11)

myad (xPT)
mxag (Data)

0.192(14)(7)
-0.042(5) (1)

0.199(5)(1)
-0.041(2)(1)

@ Fits suggest O(5%) discretization error for

a”l =2GevV _
b
; NNLO (450 MeV cut)
fo Including a}
H Colangelo et. al
o Gasser/Leutwyler
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Conclusions

@ We are able to fit SU(2) PQxPT with the full NNLO corrections to our data for
mfr and fr without the need for additional terms or constraints

o We determine 9 NLO LECs, and 8 independent linear combinations of NNLO
LECs, in the PQ theory

o Good agreement between unquenched LECs and lattice/phenomenological
results reported in the literature
o The SU(2) chiral expansion appears to be very robust:

> At the physical light quark mass NLO corrections are O(5%), and NNLO
corrections are O(.5%)
> Lattice data for f; starts to systematically disagree with NLO xPT for
myx ~ O(350MeV), although the fit remains consistent with the data to O(2 — 3%)
» NLO and NNLO contributions to fr become comparable in size around
mx ~ O(500MeV), likely indicating onset of N3LO terms

o Paper based on this work to appear on the arXiv soon

Thank you for your attention!
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w7 Scattering on the Lattice

o al characterizes low energy 7 — 7 interaction of isospin I state

e Liischer’s quantization condition (box size L):

2 3
1 _ _4mag @ @ @
Err—2m; = L 1+a 7 + c2 I +c3 T

e Two diagrams contribute to E2,

(07 (D)1 072 (0)) = 2(D(t) — C(1))

(o B0 )
(a) D (“direct™)

e I =0 case harder (noisy vacuum diagram)

o At NLO in xPT, mqad (21 —I—Zz)
> Sharpen lattice predictions for ¢1, fo
> Stabilize NNLO fits with light mass cuts

(b) C (“cross™)
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