universitätbonn

Three particles in a finite volume

Akaki Rusetsky, University of Bonn

U.-G. Meißner, G. Rios and AR

Phys. Rev. Lett. 114 (2015) 9, 091602

Lattice-2015, Kobe, 14 July 2015

Plan

- Introduction: loosely bound states in a finite volume
- The quantization condition for the three-body systems: essentials
- Spectrum of the three-body bound state in a finite volume
- Conclusions, outlook

The nature of the bound states of quarks and gluons

Is a given state ...

- a "standard" bound state of quarks: $q \bar{q}$ or $q q q$?
- a hadronic molecule (a bound state of hadrons)?
- an "exotic" state: glueball, tetraquark, pentaquark, ...?
\hookrightarrow What are the relevant degrees of freedom to describe such states?
\hookrightarrow Model independence: how does one formulate the criteria in terms of the observables?

Example: Compositeness condition or pole counting criterion
S. Weinberg, D. Morgan and M.R. Pennington, N.A. Törnqvist, . . .

How does one formulate such criteria on the lattice?

Lüscher's approach

M. Lüscher, lectures given at Les Houches (1988); NPB 364 (1991) 237, ...

- Lattice simulations are done at a finite volume (box size L)

$$
\text { Lüscher's approach: } \quad R^{-1} L \simeq M L \gg 1
$$

R : the range of the interaction

- Momenta are small: $p \simeq 2 \pi / L \ll$ the lightest mass
- Finite-volume corrections to the energy levels above threshold are only power-suppressed in L; exponential suppression below threshold
- Studying the dependence of the energy spectrum on L gives the scattering phase in the infinite volume
- The shallow bound states: characteristic bound-state momenta $\kappa \ll R^{-1}$; exponential factor $\exp (-\kappa L)$ not negligible
\Rightarrow The Lüscher approach can be used to study the volumedependence of the shallow bound states as well.

Example: two-body bound state in a finite volume

Infinite volume, shallow bound state:

$$
\begin{gathered}
\left(-\sum_{i=1}^{2} \frac{\nabla_{i}^{2}}{2 m}+V\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)\right) \Psi_{B}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=-E_{B} \Psi_{B}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \\
\Psi_{B}=A \sqrt{8 \pi \kappa} \frac{\exp (-\kappa r)}{4 \pi r}, \quad E_{B}=\frac{\kappa^{2}}{m}, \quad r \gg R
\end{gathered}
$$

$1-Z \propto A^{2}: \quad A$ is the asymptotic normalization coefficient
Finite volume, periodic boundary conditions:

$$
V_{L}(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} V(\mathbf{x}+\mathbf{n} L)
$$

$H_{L} \Psi_{L} \doteq\left(-\sum_{i=1}^{2} \frac{\nabla_{i}^{2}}{2 m}+V_{L}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)\right) \Psi_{L}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=-E_{L} \Psi_{L}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$

Energy shift in a finite volume

Periodic ansatz for the wave function:

$$
\Psi_{0}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} \Psi_{B}\left(\mathbf{r}_{1}-\mathbf{r}_{2}+\mathbf{n} L\right)
$$

Perturbative solution:

$$
\begin{array}{r}
\left(H_{L}+E_{B}\right) \Psi_{0}=\eta, \quad \Delta E=E_{B}-E_{L}=\left\langle\Psi_{0} \mid \eta\right\rangle /\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle+\cdots \\
\Delta E=6 \int d^{3} \mathbf{x} \Psi_{B}(\mathbf{x}) V(\mathbf{x}) \Psi_{B}(\mathbf{x}+\mathbf{e} L)=-24 \pi A^{2} \frac{\exp (-\kappa L)}{m L}+\cdots \\
\mathbf{e}=(0,0,1)
\end{array}
$$

... up to the exponentially suppressed terms at $\kappa L \gg 1$

The asymptotic normalization coefficient

Use non-relativistic EFT:

$$
\begin{aligned}
V(\mathbf{p}, \mathbf{q}) & =C_{0}+\frac{1}{2} C_{1}\left(\mathbf{p}^{2}+\mathbf{q}^{2}\right)+\cdots \\
\left(\mathbf{p}^{2}+\kappa^{2}\right) \Psi_{B}(\mathbf{p}) & =\int \frac{d^{d} \mathbf{q}}{(2 \pi)^{d}} V(\mathbf{p}, \mathbf{q}) \Psi_{B}(\mathbf{q}) \text { with: } \int \frac{d^{d} \mathbf{q}}{(2 \pi)^{d}}\left|\Psi_{B}(\mathbf{q})\right|^{2}=1 \\
\Longleftrightarrow \Psi_{B}(\mathbf{p}) & =\sqrt{8 \pi \kappa} \frac{A}{\mathbf{p}^{2}+\kappa^{2}}+Q_{0}+Q_{1} \mathbf{p}^{2}+\cdots \\
\Longleftrightarrow \Psi_{B}(\mathbf{r}) & =\underbrace{\sqrt{8 \pi \kappa} \frac{A \exp (-\kappa r)}{4 \pi r}}_{\text {long-range }}+\underbrace{Q_{0} \delta^{3}(\mathbf{r})-Q_{1} \nabla^{2} \delta^{3}(\mathbf{r})+\cdots}_{\text {short-range }}
\end{aligned}
$$

- Predominately molecular state: $A \simeq 1$ and $Q_{0}, Q_{1}, \ldots \simeq 0$
- A tight compound: $A \simeq 0$ and $Q_{0}, Q_{1}, \ldots \neq 0$

Weinberg's compositeness condition

A bound-state pole in the elastic T-matrix:

$$
\begin{gathered}
T(p)=\frac{1}{p \cot \delta(p)-i p} \rightarrow \frac{2 \kappa(Z-1)}{p^{2}+\kappa^{2}}+\text { regular } \\
p \cot \delta(p)=\frac{1}{a}+\frac{1}{2} r p^{2}+\cdots, \quad Z=1-|A|^{2}=-\frac{r \kappa}{1-r \kappa}+\cdots
\end{gathered}
$$

\Longleftrightarrow For shallow bound states, Z can be expressed in terms of the effective-range expansion parameters (Weinberg):

$$
a \kappa=\frac{2(1-Z)}{2-Z}, \quad r \kappa=-\frac{Z}{1-Z}
$$

- $Z \simeq 1$: a tight quark compound
- $Z \simeq 0$: a large moleqular component

Is it possible to formulate the compositeness condition on the lattice?
A. Martinez Torres et al., PRD 85 (2012) 014027; T. Sekihara and T. Hyodo, PRC 87 (2013) 045202; D. Agadjanov, F.-K. Guo, G. Rios and AR, JHEP 1501 (2015) 118

Three and more particles in a finite volume

The problem: volume dependence of the observables in the multiparticle systems

- Properties of the hadron resonances (e.g., the Roper resonance)
- Nuclear physics from lattice QCD

Finite-volume energy spectrum in three-particle systems:
K. Polejaeva and AR, EPJA 48 (2012) 67
P. Guo, arXiv:1303.3349 [hep-lat]
R. A. Briceno and Z. Davoudi, PRD 87 (2013) 094507
M. Hansen and S. Sharpe, arXiv:1311.4848; PRD 11 (2014) 116003;
arXiv:1504.04248
S. Bour et al., PRD 84 (2011) 091503; PRC 86 (2012) 034003
S. Kreuzer et al., PLB 673 (2009) 260; EPJA 43 (2010) 229; PLB 694 (2011) 624
S. König et al., PRL 107 (2011) 112001, Ann. Phys. 327 (2012) 1450
U.-G. Meißner, G. Rios and AR, PRL 114 (2015) 9, 091602

Physical background

- In case of 2 particles: $r \gg R$, when particles are near the walls
- In case of 3 particles: it may happen that $r \gg R, \quad r_{1} \simeq R$, when the particles are near the walls

The problem with the disconnected contributions: is the finite-volume spectrum in the 3-particle case determined solely through the on-shell scattering matrix?

Faddeev resummation in a finite volume

K. Polejaeva and AR, EPJA 48 (2012) 67

- Naive generalization of Faddeev equations in a finite volume incorrect: Disconnected potential is volume-dependent
Disconnected terms should be treated properly!
\hookrightarrow The energies of the 3-particle system in a finite box is determined by the on-shell scattering matrix elements in the infinite volume
\hookrightarrow Confirmed by M. Hansen and S. Sharpe: $\quad \rightarrow$ Talk by M. Hansen Quantization condition for the three-particle system

Three-body bound states in the infinite volume

- Three identical particles
- Unitary limit: two-body scattering length $a \rightarrow \infty, r \rightarrow 0$
- Short-range two-body interactions, no three-body force at this moment
\hookrightarrow Efimov spectrum:
Infinitely many, arbitrarily shallow 3-body bound states. Energy levels $E_{T}^{(n)}$ accumulate towards the point $E=0$. Universal relation:

$$
E_{T}^{(n+1)} / E_{T}^{n}=1 / 515.03 \quad \text { as } \quad n \rightarrow \infty, \quad a= \pm \infty
$$

Eigenvalue equation:

$$
\sin \left\{\frac{1}{2} s_{0} \ln \left(m E_{T} / \kappa_{*}^{2}\right)\right\}=0, \quad s_{0}=1.00624
$$

Schrödinger equation and the wave function

$$
\begin{aligned}
\left(-\frac{1}{2 m} \sum_{j=1}^{3} \nabla_{i}^{2}+\sum_{j k} V\left(\mathbf{x}_{i}\right)\right) \Psi_{B}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right) & =-E_{B} \Psi_{B}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right) \\
\mathbf{x}_{i}=\mathbf{r}_{j}-\mathbf{r}_{k}, \quad \mathbf{y}_{i} & =\frac{1}{\sqrt{3}}\left(\mathbf{r}_{j}+\mathbf{r}_{k}-2 \mathbf{r}_{i}\right)
\end{aligned}
$$

Hyperspherical coordinates:

$$
R^{2}=\frac{1}{3}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}\right), \quad\left|\mathrm{x}_{i}\right|=\sqrt{2} R \sin \alpha_{i}
$$

Neglecting orbital excitations, the ground-state wave function is:

$$
\begin{gathered}
\Psi_{B}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=\psi_{0}\left(R, \alpha_{1}\right)+\psi_{0}\left(R, \alpha_{2}\right)+\psi_{0}\left(R, \alpha_{3}\right) \\
\psi_{0}(R, \alpha)=A \mathcal{N} \frac{\sin \left(s_{0}(\pi / 2-\alpha)\right)}{R^{2} \sin (2 \alpha)} K_{i s_{0}}(\sqrt{2} \kappa R), \quad E_{T}^{(0)}=\frac{\kappa^{2}}{m}
\end{gathered}
$$

Shift of the three-body energy level

The first non-perturbative explicit result in the 3-particle sector
U.-G. Meißner, G. Rios and AR, PRL 114 (2015) 9, 091602

Generalization to the finite volume:

$$
\begin{gathered}
V_{L}(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} V(\mathbf{x}+\mathbf{n} L) \\
\left(-\frac{1}{2 m} \sum_{j=1}^{3} \nabla_{i}^{2}+\sum_{j k} V_{L}\left(\mathbf{r}_{j k}\right)\right) \Psi_{L} \doteq H_{L} \Psi_{L}=-E_{L} \Psi_{L}
\end{gathered}
$$

Variational solution:

$$
\begin{aligned}
& \Psi_{0}=\sum_{\mathbf{n}, \mathbf{m}} \Psi_{B}\left(\mathbf{x}_{i}-(\mathbf{n}+\mathbf{m}) L, \mathbf{y}_{1}-\frac{1}{\sqrt{3}}(\mathbf{n}-\mathbf{m}) L\right) \\
& \left(H_{L}+E_{B}\right) \Psi_{0}=\eta, \quad \Delta E=\left\langle\eta \mid \Psi_{0}\right\rangle /\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle+\cdots
\end{aligned}
$$

Evaluation of the energy shift

$$
\Delta E=36 \int d^{3} \mathbf{x} d^{3} \mathbf{y} \Psi_{B}(\mathbf{x}, \mathbf{y}) V(\mathbf{x}) \Psi_{B}\left(\mathbf{x}-\mathbf{e} L, \mathbf{y}-\frac{1}{\sqrt{3}} \mathbf{e} L\right)+\cdots
$$

Substituting the explicit expression for $\Psi_{B} \ldots$

$$
\begin{gathered}
\Delta E=c \cdot\left(\kappa^{2} / m\right)(\kappa L)^{-3 / 2}|A|^{2} \exp (-2 \kappa L / \sqrt{3})+\cdots \\
c \simeq-87.886
\end{gathered}
$$

- Valid up to exponentially suppressed terms at $\kappa L \rightarrow \infty$
- Qualitatively agrees with the numerical results of: S. Kreuzer et al., PLB 673 (2009) 260; EPJA 43 (2010) 229; PLB 694 (2011) 624

Conclusions, outlook

- Using effective theories of QCD in a finite volume facilitates the extraction of physical observables from lattice simulations
- In particular: the volume-dependence of the two- and three-body bound state spectrum is determined by the normalization coefficient; can be used to judge about the nature of the states
- Future developments:
- Three-particle bound states beyond the infinite scattering length approximation; including partial-wave mixing
- Three-particles with twisted boundary conditions
- Relation to the general three-particle quantization condition
- Reactions in the three-particle systems
- ... and many more

