High statistics analysis of nucleon form factor and charged in lattice QCD

Eigo Shintani (Mainz/AICS)

Hatmut Wittig(Mainz) and collaboration with Mainz-CLS group

Lattice2015, 14-18 July 2015, Kobe International Conference Center

OUTLINE

Introduction

Error reduction technique

Lattice result

- Plateau and summation method for axial charge
- Scalar and tensor charge
- Isovector form factor
- Charge radius

Summary

1. Introduction "Puzzle" of nucleon form factor in LQCD

Constantinou, lattice2014

- Many lattice efforts, $N_f=2, 2+1$ (also 2+1+1) with Wilson, Twisted Wilson, DW, ...
- There is slight tension from experiment, even in different group

 $\Delta g_A \sim 5 - 10\%$, $\Delta r_E^2 \sim 10 - 20\%$

• Careful estimate of systematic uncertainty should be carried out.

1. Introduction Computation of matrix element

2pt, 3pt function

 $\langle 0|\mathcal{N}(t)\mathcal{N}^{\dagger}(0)|0\rangle = |\langle 0|\mathcal{N}|N\rangle|^{2}e^{-m_{N}t} + |\langle 0|\mathcal{N}|N'\rangle|^{2}e^{-m'_{N}t} + \cdots$

First excited state contamination

 $\langle 0|T\{\mathcal{N}(t_s,0)J_{\mu}(t,q)\mathcal{N}^{\dagger}(0,p)|0\rangle$ $= \langle 0|\mathcal{N}|N\rangle\langle N|J_{\mu}|N\rangle\langle N|\mathcal{N}^{\dagger}|0\rangle e^{-E_Nt-m_N(t_s-t)} + \langle 0|\mathcal{N}|N'\rangle\langle N'|J_{\mu}|N'\rangle\langle N'|\mathcal{N}^{\dagger}|0\rangle e^{-E'_Nt-m'_N(t_s-t)} + \cdots$ $\simeq Z_N(0)Z_N(p)e^{-E_Nt-m_N(t_{sep}-t)} \times \left[\{G_X,g_A\} + c_1e^{-\Delta(t_{sep}-t)} + c_2e^{-\Delta't}\right]$

Matrix element	
of ground state	

First excited state contamination $\Delta = m'_N - m_N > 0, \Delta' = E'_N - E_N > 0$

• Ground state matrix element is able to be extracted from ratio of 3pt and 2pt function after removing excited state contamination.

Our strategy:

- To reduce statistical error, the <u>all-mode-averaging (AMA)</u> is applied.
- Systematic study of excited state contamination is performed in light pion mass and large volume, $m_{\pi} L > 4$.

2. Error reduction technique AMA

Blum, Izubuchi, ES (2013)

Reduction of computational cost by using approximation

$$O^{(\text{imp})} = O^{(\text{rest})} + \frac{1}{N_G} \sum_{g \in G} O^{(\text{appx}),g}, \ O^{(\text{rest})} = O - O^{(\text{appx})}$$

- O: high precision (10⁻¹⁰ residue) \Rightarrow expensive but small number of computation
- $O^{(appx)}$: low precision (~10⁻² residue) \Rightarrow cheap but large number of computation

Error reduction of AMA estimator $O^{(imp)}$ is depending on quality of $O^{(appx)}$.

- Parameter tuning of deflation field $\rm N_{\rm s}$ which is related to performance of iteration algorithm.
- Cost of computing quark propagator is reduced to 1/5 and less.
- Total speed-up is about factor 2 and more. (depending on lattice size and pion mass)

3. Lattice results (preliminary)

6

CLS config, $N_f = 2$ Wilson-clover fermion

	Lattice	a (fm)	m_{π} (GeV)	N _G	t _s (fm)	#conf	#meas(*)
E5	64 × 32 ³	0.063	0.456	64	0.82, 0.95, 1.13	~480	~30,000
	(2.0 fm) ³		(m _π L=4.7)		1.32	994	63,616
					1.51	1605	102,720
F7	96 × 48 ³	0.063	0.277	64	0.82, 0.95, 1.07	250	16,000
	(3.0 fm) ³		(m _π L=4.2)	128	1.20, 1.32	250	32,000
				192	1.51	250	64,000
N6	96 × 48 ³	0.05	0.332	32	0.9	110	3,520
	(2.4 fm) ³		(m _π L=4.1)	32	1.1,1.3	888	28,416
				32	1.5, 1.7	936	30,272
G8	128×64^{3}	0.063	0.193	80	0.88	184	14,720
	(4.0 fm) ³		(m _π L=4.0)	112	1.07	170	19,040
				160	1.26	178	28,480
				160	1.51	179	28,640

* Effective statistics : #mes = N_G × #conf

3. Lattice results (preliminary) Nucleon mass and its excited state

- The ground-state dominant, t = I I.5 fm.
- Including the excited state, t = 0.5 1.5 fm
- Fitting function
 One-state : Ze^{-mt},
 Two-state : Z e^{-m t} + Z'e^{-m't}
- almost comparable with two fitting results

3. Lattice results (preliminary) Axial charge

Single ratio of 2pt and 3pt with fixed t_s

 $R_A(t,t_s) = Z \frac{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)J_3(t,q)\mathcal{N}^{\dagger}(0,0)|0\rangle}{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)\mathcal{N}^{\dagger}(0,0)|0\rangle} \simeq g_A + c_1 e^{-\Delta t_s} + c_2 e^{-\Delta'(t_s-t)}$

N6: $(2.4 \text{ fm})^3$, $a^{-1}=3.95 \text{ GeV}$, $m_{\pi}=0.332 \text{ GeV}$ t*./a*=34 t_/a=30 1.3 t /a=26 t_/a=22 t*_/a*=18 **2**^{1.2} -0.5 0.5 *t-t*/2 fm

- Computation of 3pt and 2pt function at zero momentum with spin projection P.
- Signal is regarded as plateau.
- There is significant size of excited state $(2^{nd} \text{ and } 3^{rd} \text{ terms}) \rightarrow \text{fitting}$ including Ist excited state

• Forward and backward averaging

3. Lattice results (preliminary) Extraction of g_A

Ground and excited state ansatz

Ground state dominance (plateau method)

$$R_A(t,t_s) = Z \frac{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)J_3(t,q)\mathcal{N}^{\dagger}(0,0)|0\rangle}{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)\mathcal{N}^{\dagger}(0,0)|0\rangle} \simeq g_A, \ (t_s,t_s-t\gg 1)$$

- Evaluation from constant fitting for t with fixed t_s .
- To suppress the excited state contamination, measurement at large t_s is needed.
- First excited state (two-state)

 $R_A(t,t_s) \simeq g_A + c \left(e^{-\Delta t_s} + e^{-\Delta (t_s - t)} \right)$

• Δ is mass difference between ground and 1st excited state.

Summation method

Capitani et al. PRD86 (2012)

PNDME(2014), RQCD(2014), ...

$$R_A^{\text{sum}}(t_s) = \sum_{t=0}^{t_s} R_A(t, t_s) \simeq a_0 + t_s(g_A + O(e^{-\Delta t_s}))$$

- Using summation in [0,t_s] at fixed t_s , the excited state effect is ~ $O(e^{-\Delta t_s})$
- g_A is given from t_s linear part at $t_s >> 1$.

3. Lattice results (preliminary): axial charge Plateau method

Non-AMA results at $t_s < 1$ fm N6: $(2.4 \text{ fm})^3$, $a^{-1}=3.95 \text{ GeV}$, $m_{\pi}=0.332 \text{ GeV}$ 1.3 1.2 \mathfrak{g}_{A} 1.1 Ī Experiment Jaeger, Rae et al. (2013--2014) 1.5 t_s fm

3. Lattice results (preliminary): axial charge Plateau method

Non-AMA results at t_s < 1.5 fm N6: (2.4 fm)³, a⁻¹=3.95 GeV, m_π=0.332 GeV

3. Lattice results (preliminary): axial charge Plateau method

• AMA results at $t_s < 1.5$ fm

N6: $(2.4 \text{ fm})^3$, $a^{-1}=3.95 \text{ GeV}$, $m_{\pi}=0.332 \text{ GeV}$

3. Lattice results (preliminary): axial charge Plateau method

AMA results at $t_s > 1.5$ fm

AMA, plateau

1.5

t_c fm

3. Lattice results (preliminary): axial charge Two state and summation method

- After correction to excited state, g_A increases, and in agreement with plateau method in $t_s > 1.5$ fm.
- Mass difference Δ is compatible with two state fit of 2pt function.

- Linear behavior which is consistent with linear ansatz as expected.
- Comparison between two fitting range:
 t_s = (fit A)[0.9, 1.7], (fit B)[1.1, 1.7]
 - \Rightarrow estimate of systematic uncertainty

3. Lattice results (preliminary): axial charge Comparison

- Four methods provide comparable result except for G8 ensemble at $m_{\pi} = 0.19$ GeV.
- On G8 summation method with fit A (including short t_s) is discrepancy from others \rightarrow expect systematic uncertainty in linear fit function.
- Finite pion mass effect of g_A is rather mild.

3. Lattice results (preliminary) Scalar and tensor charge

• There does not appear significant effect of excited state.

3. Preliminary results: Isovector form factor Analysis at large t_s

G8: $(4.0 \text{ fm})^3$, a^{-1} =3.13 GeV, m_π=0.19 GeV Plat, t_s=1.1 fm [1504.04628] Sum, [1504.04628] Plat, t =1.1 fm [AMA] Plat, t =1.5 fm [AMA] 0.8 Sum [AMA] Kelly 2004 O.0 G^{ISO} 0.4 0.2 0.10.3 0.4 0 $O^2 \text{ GeV}^2$

- From $t_s > 1$ fm, there is still tendency to decrease by ~10%.
- Summation method and plateau method at $t_s > 1.5$ fm are compatible.

- Comparison with previous work on the same ensemble.
- Large discrepancy between plateau method at $t_s = 1.1$ fm and 1.5 fm, due to excited state contamination.
- Approaching to experimental value.

3. Preliminary results Axial charge and charge radius

- Analysis of axial charge and charge radius with large t_s up to 1.7 fm.
- Result has still large statistical error, even though statistics $O(10^5)$ is used.
- In $t_s = 1.1$ fm, there is still unsuppressed excited state effect, which may be one of the reason for large discrepancy from experiment \Rightarrow need more than 1.5 fm.
- Axial charge may not have strong m_{π} dependence, but $< r_{E} >$ may have.

4. Summary Summary

- High statistics calculation of nucleon form factor is performed in N_f=2 Wilson-clover at $Lm_{\pi} > 4$ with $m_{\pi} = 0.19$ --0.46 GeV.
- All-mode-averaging technique is working well for reduction of statistical error.
- t_s > 1.5 fm is required for small contribution of excited state contamination in axial charge and (iso)vector form factor.
- Axial charge and charge radius are approaching to experimental value.
- Feasible study for application to $N_f = 2+1$ CLS configurations with open boundary condition. Tim Harris, talk on 18 July 10:00

Thank you for your attention.

Isovector form factor

Ratio with momentum transition

$$R_G(t,t_s) = Z \frac{\mathcal{P}\langle 0|\mathcal{N}(t_s,p_1)J_{\mu}(t,q)\mathcal{N}^{\dagger}(0,p_0)|0\rangle}{\mathcal{P}\langle 0|\mathcal{N}(t_s,p_0)\mathcal{N}^{\dagger}(0,p_0)|0\rangle} K(p_1,p_0) \simeq G_X + d_1 e^{-\Delta t_s} + d_2 e^{-\Delta'(t_s-t)}$$

$$K(p_1, p_0) = \sqrt{\frac{C_{2\text{pt}}^{\text{lc}}(p_1, t_s - t)C_{2\text{pt}}^{\text{sm}}(p_0, t)C_{2\text{pt}}^{\text{lc}}(p_0, t_s)}{C_{2\text{pt}}^{\text{lc}}(p_0, t_s - t)C_{2\text{pt}}^{\text{sm}}(p_1, t)C_{2\text{pt}}^{\text{lc}}(p_1, t_s)}},$$

- The ratio consists of 3pt and 2pt, with combination of local "lc" and smeared "sm" sink.
- Matrix element with Sachs form factor

$$\langle N(\vec{p}_1) | J_{\mu} | N(\vec{p}_0) \rangle = \bar{u}(p_1) \Big[F_1^v(q^2) \gamma_{\mu} + F_2 q_{\nu} \sigma_{\mu\nu} / 2m_N \Big] u_N(p_0) \Big]$$
$$G_E = F_1 - \frac{q^2}{4m_N^2} F_2, \ G_M = F_1 + F_2$$

- Form factor G_X as a function of q^2 , $q = p_1 p_0$, in which $p_1 = (0,m_N) p_0 = (p,E)$ are used.
- Systematic study of excited state contamination with plateau and summation method is necessary.

Improvement of standard deviation:

$$\frac{\sigma^{\rm imp}}{\sigma} \simeq \sqrt{\frac{1}{N_G} + 2(1-r) + \frac{1}{N_g^2} \sum_{g \neq g'} r_{gg'}} r_{gg'}$$
$$r = \frac{\langle \Delta O \Delta O^{\rm (appx)} \rangle}{\sigma \sigma^{\rm (appx)}} \qquad r_{gg'} = \frac{\langle \Delta O^{\rm (appx),g} \Delta O^{\rm (appx),g'} \rangle}{\sigma^{\rm (appx),g} \sigma^{\rm (appx),g'}}$$

r: correlation between O and O^(appx) r_{gg},: correlation between O^{(appx),g} and O^{(appx),g'}

 O^(appx) has several tuning parameters to control of r and r_{gg}, e.g. stopping condition, deflation field,

source location

Performance test of AMA

Correlation

- $r_{gg'}$: correlation between $O^{(appx)}$ with g and g' transformation.
- 2(1-r) : correlation between $O^{(appx)}$ and O.
- At t ~ 24, size of correlation is similar to I/N_G , \Rightarrow maximum point to reduce error

Summation method on G8 G8: $(4.0 \text{ fm})^3$, $a^{-1}=3.13 \text{ GeV}$, $m_{\pi}=0.19 \text{ GeV}$ 30 25 $\mathbf{R}^{\mathrm{sum}}_{\mathbf{A}}$ 50 15 10 1.5 1 $t_{s}(fm)$

t dependence of G_E

25