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Introduction

“Puzzle” of nucleon form factor in LOQCD

Constantinou, lattice2014
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* Many lattice efforts, N=2, 2+ (also 2+1+1) with Wilson, Twisted Wilson, DW, ...
* There is slight tension from experiment, even in different group
o o)
Agn~5--10%,  Arg2~ 10 -- 20%
[ ]

Careful estimate of systematic uncertainty should be carried out.



1. Introduction
Computation of matrix element

» 2pt, 3pt function
O (DN (0)]0) = [{OW N6 + (O] 26t ..

First excited state contamination
(O|T{N (t5,0)J,.(t, )N (0, p)|0)

= (ONIN VLN NIAT o) Byt 4 UV (N']J, [N (VAT Bt ) .
~ Zn(0)Zy (p)e PNt lter =D 5 (G, ga} + cre” Bt cze*A'*]

Matrix element First excited state contamination
of ground state A=mly—my>0,A"=Ey—EnN>0

* Ground state matrix element is able to be extracted from ratio of 3pt and 2pt
function after removing excited state contamination.

Our strategy:

* To reduce statistical error, the all-mode-averaging (AMA) is applied.
* Systematic study of excited state contamination is performed in light pion
mass and large volume, m_L > 4.
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2. Error reduction technique

AMA Blum, lzubuchi, ES (201 3)

» Reduction of computational cost by using approximation
. 1
(imp) _ (y(rest) (appx).g (rest) _ ) _ (appx)
O O NG§ O , O O-0

geG
* O: high precision (10-'° residue) = expensive but small number of computation
« O@PX): Jow precision (~ 102 residue) = cheap but large number of computation

Error reduction of AMA estimator O(™p) js depending on quality of O@p»),

g,. N6 with t =22 (1.1 fm), t/a=11
0.]._ T T T T T LI ’ T T T T T LI ‘

—=wvian=n| | * Parameter tuning of deflation field N,
“im ng:f | which is related to performance of iteration
9 g_

\ ) % _non-AMA algorithm.

-\.;\% | * Cost of computing quark propagator is
S | reduced to /5 and less.

* Total speed-up is about factor 2 and more.

(depending on lattice size and pion mass)

Relative error

0.01f
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3. Lattice results (preliminary)

CLS config, N = 2 Wilson-clover fermion

Lattice a (fm) | m_(GeV) | Ng t, (fm) #conf | #meas(*)
ES 64x323 |0.063 |0.456 64 0.82,0.95, 1.13 ~480 | ~30,000
(2.0 fm)?3 (m L=4.7) .32 994 63,616
|.51 1605 102,720
F7 96 X483 |0.063 |0.277 64 0.82,0.95, 1.07 250 16,000
(3.0 fm)?3 (m_L=4.2) | 128 1.20, 1.32 250 32,000
192 |.51 250 64,000
N6 |96x48% |0.05 |[0.332 32 0.9 110 3,520
(2.4 fm)3 (m_L=4.1) | 32 l.1,1.3 888 28,416
32 1.5, 1.7 936 30,272
G8 128 X 64° | 0.063 | 0.193 80 0.88 | 84 14,720
(4.0 fm)3 (m_L=4.0) | 12 1.07 170 19,040
160 .26 178 28,480
160 |.51 179 28,640

* Effective statistics : #mes = N X #conf



3. Lattice results (preliminary)
Nucleon mass and its excited state
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The ground-state dominant, t = |--1.5 fm.
Including the excited state, t = 0.5 -- |.5 fm

F(x) ; v\ J F() Fitting function
N(O-p) Nitp) One-state ;: Ze™t

F(x): Jacobian function Two-state : ZeMt+ Z’e™m't
with APE smearing link. * almost comparable with two fitting results
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3. Lattice results (preliminary)

Axial charge

» Single ratio of 2pt and 3pt with fixed t,

RA(t, ts) =/

P{O|N (ts,0)J5(t, ) NT(0,0)|0)

P{OIN (ts,0)NT(0,0)(0)

N6: (2.4 fm)*, a'=3.95 GeV, m_=0.332 GeV

3

2

ol
! }§}}{ §t

!§§

—
T

[ | §§

{}¥¥}{}{%}{}$}%

§}§ i%gig §§

!;i§§§§§§§ §

{}{}

I

l.§

® H ¢ )

t/a=34|]

t/a=30

ts/a:26 .
tJa=22 -
tJa=18 1

43t

| 1 | | I 1
I 05

0
t- ts/2 fm

05

/
>~ ga+ cle_ms + CQG_A (t:—1)

* Computation of 3pt and 2pt
function at zero momentum with
spin projection P.

* Signal is regarded as plateau.

* There is significant size of excited
state (2"¢ and 3" terms) — fitting
including [*t excited state

* Forward and backward averaging

J(T-t.q) Jit.q)

S
<
N(T-t_s,0) N(0,p) N(O,p) N(t_s,0)




3. Lattice results (preliminary)
Extraction of g,

» Ground and excited state ansatz

Ground state dominance (plateau method)
P(OJN (ts,0)J5(t, ¢)NT(0,0)]0)
P(O|N (ts, 0)NT(0,0)[0)

* Evaluation from constant fitting for t with fixed t..
* To suppress the excited state contamination, measurement at large t; is needed.

First excited state (two-state) PNDME(2014),RQCD(2014), ...
Ra(t,ts) =~ ga+ c(e_Ns + e_A(tS_t))

Ra(t,ts) = Z ~  ga, (ts,ts —t>1)

* A is mass difference between ground and [t excited state.

» Summation method Capitani et al. PRD86 (2012)

ts
RE™(t) = Y Ralt,ts) =~ ag + ts(ga + O(e2%))
t=0

* Using summation in [0,t] at fixed t_ , the excited state effect is ~ O(e™2%*)

* g, is given from t linear part at t, >> |.
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3. Lattice results (preliminary): axial charge
Plateau method

» Non-AMA results at t, <| fm
N6: (2.4 fm)?, a'=3.95 GeV, m_=0.332 GeV
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3. Lattice results (preliminary): axial charge
Plateau method

» Non-AMA results at t, <I.5 fm
N6: (2.4 fm)?, a'=3.95 GeV, m_=0.332 GeV
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3. Lattice results (preliminary): axial charge
Plateau method

» AMA results at t, <I.5 fm
N6: (2.4 fm)?, a'=3.95 GeV, m_=0.332 GeV
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3. Lattice results (preliminary): axial charge
Plateau method

» AMA results at t, >1.5 fm
N6: (2.4 fm)?, a'=3.95 GeV, m_=0.332 GeV
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c;.): I E il E N to control the excited state
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3. Lattice results (preliminary): axial charge
Two state and summation method

N6: (2.4 fm)*, a”'=3.95 GeV, m_=0.332 GeV
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* After correction to excited state, g,
increases, and in agreement with
plateau method in t, > [.5 fm.

* Mass difference A is compatible with
two state fit of 2pt function.

|4

N6: (2.4 fm)*, a"'=3.95 GeV, m =0.332 GeV

t. (fm)

* Linear behavior which is consistent with
linear ansatz as expected.
» Comparison between two fitting range:
t, = (fit A)[0.9, I.7], (fit B)[1.1, 1.7]
= estimate of systematic uncertainty



3. Lattice results (preliminary): axial charge

Comparison
E5 F7 N6 G8
. u 1|— Experiment
11.7 —|| ® One-state
g - 4| m Two-state
i - | A SumfitA
i 1 B ] i 1 1.62— % __ Sum fit B
131 1.3} J13fb T S ]
—_— | —st
< I ] ] T 1 :
o0 1 f ' :
i 1 I 1 I 11.4F =
12} 112] TSR
i % { 1T 1 0 11.3F @ I 3
i 10 1| 1 F L
i 1 0 1 11.2F 3
1.1t It It 1k :

* Four methods provide comparable result except for G8 ensemble at m_=0.19 GeV .

* On G8 summation method with fit A (including short t)) is discrepancy from others
— expect systematic uncertainty in linear fit function.

* Finite pion mass effect of g, is rather mild.
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3. Lattice results (preliminary)

Scalar and tensor charge

1.2

0.9

0.6

N6: (2.4 fm)?, @ '=3.95 GeV, m_=0.332 GeV

Scalar (lattice)

T
@® One-state

t fm
S

ar

1.1

Tensor (lattice)

N6: (2.4 fm)’, a'=3.95 GeV, m_=0.332 GeV

0.9

’ @ AMA, plateau

t fm

* There does not appear significant effect of excited state.

1.5




3. Preliminary results: Isovector form factor
Analysis at large t,

G8: (4.0 fm)3, al=3.13 GeV, m_=0.193 GeV G8: (4.0 fm)°, a'=3.13 GeV, m_=0.19 GeV
T ' ' T ' ' T T | T T ] 1 T | ' | ' 1 ' T ]
09L h I % O Plat, t=1.1 fm [1504.04628]
24 O Sum, [1504.04628]
i ® ] - o] ® Plat, t=1.1 fm [AMA]
I B & Plat, =1.5 fm [AMA]
0.8F (] . 0.8 é = Sum [AMA]
L — Kelly 2004
2
O 0.6 -
® (Q=0.09GeV> 0.4 o
0.5 B Q>=0.19 GeV?
& Q=028 GeV? - . | . | , | , |
04— - s I1 . - : : 1|5 : : 0 0.1 0.22 20.3 04
t fm ' Q" GeV

* From t, > | fm, there is still

* Comparison with previous work on the

tendency to decrease by ~10%. same ensemble.
¢ Summation method and plateau * Large discrepancy between plateau
method at t, > |.5 fm are compatible. method at t, = |.| fm and I.5 fm, due to

excited state contamination.
* Approaching to experimental value.



3. Preliminary results
Axial charge and charge radius
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; fm Dipole @=0.079 fm (sum) [this work]
. - | A Dipole a=0.063 fm (sum) [1504.04628]
1 A Dipole @¢=0.063 fm (sum) [this work]
s . e O Dipole a=0.050 fm (sum) [1504.04628]
; ® Dipole a=0.050 fm (sum) [this work]
5 . | & Experiment
4 ?
0 0.05 0.1 0.15 0.2 0.25

* Analysis of axial charge and charge radius with large t, up to |.7 fm.

* Result has still large statistical error, even though statistics O(10°) is used.

* Int, = I.1 fm, there is still unsuppressed excited state effect, which may be one of
the reason for large discrepancy from experiment = need more than 1.5 fm.

* Axial charge may not have strong m_ dependence, but <rg> may have.
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4. Summary
Summary

)

High statistics calculation of nucleon form factor is performed
in N=2 Wilson-clover at Lm_ > 4 with m_ = 0.19--0.46 GeV.

All-mode-averaging technique is working well for reduction of
statistical error.

t. > 1.5 fm is required for small contribution of excited state
contamination in axial charge and (iso)vector form factor.

Axial charge and charge radius are approaching to
experimental value.

Feasible study for application to N; = 2+| CLS configurations
with open boundary condition.  Tim Harris, talk on 18 July 10:00



Thank you for your attention.
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Isovector form factor

» Ratio with momentum transition

POIN (ts. p1)J,u(t, )NT(0,p0)[0)
P(OIN (ts, po)NT(0,po)|0)

K(p1,po) = C’%.%t(phts — t)nglt(pojt)C%%t(pojts)
’ Cé(;)t(p()?ts - t)OS{)nt(p17t)C%%t(p1’ tg)’

* The ratio consists of 3pt and 2pt, with combination of local “Ic” and smeared “sm” sink.
* Matrix element with Sachs form factor

(NN ) = @lpn) | FE (67 + Fado /2ma | (po)

2

GE:Fl—LQF27 Gy =1+ Fy

4m7yy,

RG(t,ts) = 7 K(p1,po) ~ GX_{_dle—/_\.tS_{_d?e—AJ(tS—t)

* Form factor Gy as a function of g%, q = p, - py, in Which p, = (0,m,) p, = (p,E) are used.
* Systematic study of excited state contamination with plateau and summation method is
necessary.
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AMA Blum, lzubuchi, ES (201 3)

Improvement of standard deviation:

\/— +2(1—r) Ng > Ty r: correlation between O
9 g#g’ and Of@ppx)
. (AOAOPPX)) . (AO(@PPx).g AQ(aPPx).9") I correlation between
o oo (appx) 99 o (appx),g 5 (appx),g’ O@prpx).g and O@rpx).g
appX H .
O®@ppx) has several tuning parameters Source smearing e
to control of r and I‘gg, / Sink Smearing Contraction
e.g. stopping condition, deflation field, o lnversion Sequential source
source Iocation Exact 57% 27.1% 58.7%
1.7%
Approx. ||s7
N=40 |
1.7%
Approx. |[5.7
N =60 10.5% 22.7% 10% | Total 52.5%
1.7% 1.9%
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Performance test of AMA

» Correlation
N6, 2pt function

Expected error reduction in AMA:

\/—+21—r NZZTQQ

9 g#g’'

0.05r x Tog

L1z $1r1]4
f*%ar F T 1INg = 1764
I

T \ I/Ng = 1/128

Correlation
]
M
——
—
" i—
*
* ]
*

15 20 25
at

O_
()]
[E—
)

* rg :correlation between O@PP4) with g and g’ transformation.

* 2(l-r) : correlation between O@PPx) and O.
* At t ~ 24, size of correlation is similar to |/Ng, =®maximum point to reduce error
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Summation method on G8
G8: (4.0 fm), a”'=3.13 GeV, m_=0.19 GeV

t. (fm)
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t dependence of Gg
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