Update on the Heavy-Meson Spectrum Tests of the Oktay-Kronfeld Action

Jon A. Bailey¹, Carleton DeTar², Yong-Chull Jang¹, Andreas Kronfeld³, Weonjong Lee¹, M. B. Oktay²

Lattice Gauge Theory Research Center, Seoul National University (Fermilab Lattice¹, MILC², and SWME³ Collaborations)

The 33rd International Symposium on Lattice Field Theory Kobe International Conference Center, Kobe, Japan 14-18 July 2015

Unitarity Triangle, Standard Model Flavor Physics

 $\varepsilon_{K}, V_{ub}, V_{cb}$

- Unitarity triangle (UT): $V_{ud}^* V_{ub} + V_{cd}^* V_{cb} + V_{td}^* V_{tb} = 0$
- V_{cb} normalizes the UT.
- V_{cb} enters to ε_K through $|V_{cb}|^4$.
- V_{ub} is directly related to the UT apex $(\bar{\rho}, \bar{\eta})$.
- CP violation in SM: $\bar{\eta} \neq 0$

Differences

- $|\varepsilon_{\kappa}|$: Experiment SM = 3.4 σ
- $|V_{cb}|$: Inclusive Exclusive = 2.9 σ
- $|V_{ub}|$: Inclusive Exclusive 2 \sim 3 σ
- Problems with heavy quarks c, b

$$B o \pi \ell \bar{
u}_\ell \qquad \Longrightarrow \qquad V_{ub}$$

$$B o D^{(*)} \ell \bar{
u}_{\ell} \implies V_{cb}$$

2 / 16

Lattice Calcuation with Heavy Quarks

• Combining HFAG average of experimental results and lattice form factor \mathcal{F} calculation of the semi-leptonic decays, we can extract exclusive V_{cb} .

 $\bar{B} \to D^* I \nu_I , \ \bar{B} \to D I \nu_I$

- |V_{cb}| = 0.0390(5)_{exp}(5)_{lat}(2)_{QED} [Jon A. Bailey *et al.*, PRD **89**, 114504 (2014)]
- Because the dominant error for the form factor \mathcal{F} calculation is heavy quark discretization error (1% / total 1.4%), we need an highly improved lattice action or finer lattice ensemble.
- Oktay–Kronfeld (OK) action was designed as an improved action.

Improvement for a Heavy Quark Action

$$\mathcal{L}_{\mathsf{LGT}} \doteq ar{\mathcal{L}}_{\mathsf{QCD}} + ar{\mathcal{L}}_{\mathsf{P}}$$

$$ar{\mathcal{L}}_{\mathsf{QCD}} = -ar{Q} \left[\gamma_4 D_4 + m_1 + \sqrt{m_1/m_2} oldsymbol{\gamma} \cdot oldsymbol{D}
ight] Q \ ar{\mathcal{L}}_I = \sum_i a^{\dim ar{L}_i - 4} ar{K}_i(m_2 a, g^2; c_j; \mu a) ar{\mathcal{L}}_i \sim \sum_i \mathcal{O}(aoldsymbol{p})^{\dim ar{L}_i - 4}$$

[M. B. Oktay and A. S. Kronfeld, PRD 78, 014504 (2008)]

- $\bar{\mathcal{L}}_i$ does not contain time derivative.
- All dependences on the (heavy) quark mass are isolated in the short-distance coefficients K
 _i(m₂a, g²; c_j; μa).
- $\bar{\mathcal{L}}_i$ can also be treated as a perturbation, if $a \mathbf{p} < 1$.
- $\bar{K}_i = 0$; $a\mathbf{p} < 1$, $m_2 a \ge 1$ yields non-relativistic interpretation of $\bar{\mathcal{L}}_{QCD} \doteq \mathcal{L}_{HQET}$ with a mistuned $m_1 \ne m_Q$, $(m_2 = m_Q)$.

Fermilab Action

• Fermilab action is the Sheikholeslami-Wohlert "clover" action with a non-relativistic interpretation (Fermilab formulation).

$$S_{\rm Fermilab}(m_Q = m_2(m_0)) = S_0(\zeta = 1) + S_B + S_E$$

HQET power counting: $\lambda \sim a \Lambda_{QCD}, \Lambda_{QCD}/m_Q$

$$S_{0} = m_{0} \sum_{x} \bar{\psi}(x)\psi(x) + \sum_{x} \bar{\psi}(x)\gamma_{4}D_{4}\psi(x) \qquad :\mathcal{O}(1)$$
$$+ \zeta \sum_{x} \bar{\psi}(x)\vec{\gamma} \cdot \vec{D}\psi(x) - \frac{1}{2}a \sum_{x} \bar{\psi}(x)\Delta_{4}\psi(x) - \frac{1}{2}r_{5}\zeta a \sum_{x} \bar{\psi}(x)\Delta^{(3)}\psi(x)$$
$$S_{B} = -\frac{1}{2}c_{B}\zeta a \sum_{x} \bar{\psi}(x)i\vec{\Sigma} \cdot \vec{B}\psi(x) \qquad :\mathcal{O}(\lambda)$$
$$S_{E} = -\frac{1}{2}c_{E}\zeta a \sum_{x} \bar{\psi}(x)\vec{\alpha} \cdot \vec{E}\psi(x) \qquad :\mathcal{O}(\lambda^{2})$$

[A. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, PRD 55, 3933 (1997)]

Y.-C Jang (SNU)

Heavy-Meson Spectrum Tests

OK Action

- $c_B \neq c_E$ for the OK action.
- OK action includes dim-6 and -7 operators necessary for tree-level matching to QCD through order $\mathcal{O}(\lambda^3)$: $S_{\text{OK}} = S_{\text{Fermilab}} + S_{\text{new}}$

$$\begin{split} S_{\text{new}} &= c_1 a^2 \sum_{x} \bar{\psi}(x) \sum_{i} \gamma_i D_i \triangle_i \psi(x) + c_2 a^2 \sum_{x} \bar{\psi}(x) \{ \vec{\gamma} \cdot \vec{D}, \triangle^{(3)} \} \psi(x) \\ &+ c_3 a^2 \sum_{x} \bar{\psi}(x) \{ \vec{\gamma} \cdot \vec{D}, i \vec{\Sigma} \cdot \vec{B} \} \psi(x) \\ &+ c_{EE} a^2 \sum_{x} \bar{\psi}(x) \{ \gamma_4 D_4, \vec{\alpha} \cdot \vec{E} \} \psi(x) \\ &+ c_4 a^3 \sum_{x} \bar{\psi}(x) \sum_{i} \triangle_i^2 \psi(x) \\ &+ c_5 a^3 \sum_{x} \bar{\psi}(x) \sum_{i} \sum_{j \neq i} \{ i \Sigma_i B_i, \triangle_j \} \psi(x) \qquad : \mathcal{O}(\lambda^3) \end{split}$$

[M. B. Oktay and A. S. Kronfeld, PRD 78, 014504 (2008)]

Y.-C Jang (SNU)

Meson Correlator

$$\mathcal{C}^{M}(t,oldsymbol{p}) = \sum_{oldsymbol{x}} e^{\mathrm{i}oldsymbol{p}\cdotoldsymbol{x}} \langle \mathcal{O}^{M\dagger}(t,oldsymbol{x}) \mathcal{O}^{M}(0,oldsymbol{0})
angle$$

- On the lattice, we calculate the 2-point correlator.
- 11 meson momenta $|\mathbf{p}a| (= 0, 0.099, \cdots, 1.26)$ for dispersion fit
- MILC asqtad $N_f = 2 + 1$ ensemble:

• Hopping paramters κ for heavy quarks:

$$\kappa = \tilde{\kappa}/u_0, \ 2\tilde{\kappa} = \left\{\tilde{m}_0 a + (1 + 3\tilde{r}_s\tilde{\zeta} + 18\tilde{c}_4)\right\}^{-1}$$

Q	b				С			
κok	0.039	0.040	0.041	0.042	0.047	0.048	0.049	0.050
$\kappa_{\sf FL}$			0.083	0.091		0.121	0.127	

Interpolating Operator $Q^{M}(x)$

Quarkonium

$${\cal O}^{ar Q Q}(x) = ar \psi_lpha(x) {\sf \Gamma}_{lphaeta} \psi_eta(x)$$

Spin structure

$$\mathsf{\Gamma} = \left\{ egin{array}{cc} \gamma_5 & (\mathsf{pseudoscalar}) \ \gamma_\mu & (\mathsf{vector}) \end{array}
ight.$$

• Heavy-light (strange q = s) meson

$$\mathcal{O}_{\mathbf{t}}^{\bar{Q}q}(x) = \bar{\psi}_{\alpha}(x) \Gamma_{\alpha\beta} \Omega_{\beta \mathbf{t}}(x) \chi(x)$$

• Taste for the staggered fermion

$$\Omega(x) \equiv \gamma_1^{x_1} \gamma_2^{x_2} \gamma_3^{x_3} \gamma_4^{x_4}$$

- Valence heavy quark $\psi(\mathbf{x})$: (tadpole improved) OK action and Fermilab action
- Valence light quark $\chi(x)$: asqtad staggered action $(am_q = am'_s)$

[Wingate et al., PRD 67, 054505 (2003), C. Bernard et al., PRD 83, 034503 (2011)]

Y.-C Jang (SNU)

Correlator Fit: Heavy-light $M = \overline{Q}q$

OK action, Pseudoscalar, $\kappa = 0.041$, p = 0

• fit function (*T*: time extent of lattice)

$$f(t) = A\left\{e^{-Et} + e^{-E(T-t)}\right\} + (-1)^{t}A^{p}\left\{e^{-E^{p}t} + e^{-E^{p}(T-t)}\right\}$$

fit residual

$$r(t) = rac{C^M(t) - f(t)}{|C^M(t)|}$$
, where $C^M(t)$ is data.

Correlator Fit: Quarkonium $M = \overline{Q}Q$

OK action, Pseudoscalar, $\kappa = 0.041$, p = 0

• fit function (*T*: time extent of lattice)

$$f(t) = A\left\{e^{-Et} + e^{-E(T-t)}\right\}$$

effective mass

$$m_{\mathrm{eff}}(t) = rac{1}{2} \ln \left(rac{C^{M}(t)}{C^{M}(t+2)}
ight)$$

Dispersion Fit: extract the masses M_1 and M_2

OK action, Pseudoscalar, $\kappa = 0.041$

fit:
$$E = M_1 + \frac{p^2}{2M_2} - \frac{(p^2)^2}{8M_4^3} - \frac{a^3W_4}{6}\sum_i p_i^4 \Rightarrow \text{ plot: } \widetilde{E} = E + \frac{a^3W_4}{6}\sum_i p_i^4$$

- Two points with momentum $\mathbf{n} = (2, 2, 1)$, (3, 0, 0) are distinguishable to the rotation symmetry breaking W_4 term.
- Fit the ground state energies for the lowest six momenta.

Improvement Test: Inconsistency Parameter

$$I \equiv \frac{2\delta M_{\overline{Q}q} - (\delta M_{\overline{Q}Q} + \delta M_{\overline{q}q})}{2M_{2\overline{Q}q}} = \frac{2\delta B_{\overline{Q}q} - (\delta B_{\overline{Q}Q} + \delta B_{\overline{q}q})}{2M_{2\overline{Q}q}}$$

$$\begin{split} M_{1\overline{Q}q} &= m_{1\overline{Q}} + m_{1q} + B_{1\overline{Q}q} \qquad \delta M_{\overline{Q}q} = M_{2\overline{Q}q} - M_{1\overline{Q}q} \\ M_{2\overline{Q}q} &= m_{2\overline{Q}} + m_{2q} + B_{2\overline{Q}q} \qquad \delta B_{\overline{Q}q} = B_{2\overline{Q}q} - B_{1\overline{Q}q} \end{split}$$

[S. Collins et al., NPB 47, 455 (1996), A. S. Kronfeld, NPB 53, 401 (1997)]

- By design, the inconsistency parameter *I* can examine the action improvements by *O*(*p*⁴) terms. *I* isolate the δ*B* of *O*(*p*²) effect.
- In the continuum limit, $B_1 = B_2$ and I vanishes.
- By including up to $\mathcal{O}(\boldsymbol{p}^4)$, the OK action is closer to the renormalized trajectory S_{RT} than the Fermilab action.
- We expect *I* is close to 0.

Improvement Test: Inconsistency Parameter

• Near B_s^0 mass, the coarse (a = 0.12 fm) ensemble data shows significant improvement compared to the Fermilab action.

Y.-C Jang (SNU)

Improvement Test: Hyperfine Splitting Δ

 The difference in hyperfine splittings Δ₂ − Δ₁ also can be used to examine the improvement from O(p⁴) terms in the action.

$$\Delta_1 = M_1^* - M_1, \ \Delta_2 = M_2^* - M_2$$

$$\begin{split} M_{1\overline{Q}q}^{(*)} &= m_{1\overline{Q}} + m_{1q} + B_{1\overline{Q}q}^{(*)} \\ M_{2\overline{Q}q}^{(*)} &= m_{2\overline{Q}} + m_{2q} + B_{2\overline{Q}q}^{(*)} \\ \delta B^{(*)} &= B_{2}^{(*)} - B_{1}^{(*)} \end{split}$$

 $\Delta_2 = \Delta_1 + \delta B^* - \delta B$

• In the continuum limit $\Delta_2 = \Delta_1$.

Improvement Test: Hyperfine Splitting Δ

- Hyperfine splitting shows that the OK action clearly improves the higher dimension magnetic effects for the quarkonium.
- The heavy-light results also shows an improvement near charm region; for bottom region, it is not clear to say an improvement. However, we expect that OK action gives an improvement in the bottom region (r₁Δ₁).

Conclusions and Outlook

- Inconsistency parameter shows that the OK action clearly improves $\mathcal{O}(\boldsymbol{p}^4)$ terms.
- Smaller error on the kinetic mass M₂ implies that we can tune κ more precisely.
- Hyperfine splitting shows that the OK action clearly improves the higher dimension magnetic effects for the quarkonium.
- Hyperfine splitting for the heavy-light system shows a clear improvement near D_s .
- We plan to calculate form factor of the decay $\bar{B} \rightarrow D^* l \nu$ by using OK action. Then, we can determine exclusive V_{cb} with higher precision.
- Lattice current improvement to the same order of the OK action is under way.
- We plan on the 1-loop improvement for the coefficients c_B and c_E in the OK action.