Non-perturbative Renormalization of bilinear operators with improved staggered quarks on Fine Lattice

Jangho Kim 1 , Hwancheol Jeong 2 , Weonjong Lee 2 , Jeonghwan Pak 2 , Sungwoo ${\rm Park}\ ^2$

¹Korea Institute of Science and Technology Information

²Seoul National University

Lattice 2015

1 / 18

Introduction

- ▶ We present the preliminary results of the wave function renormalization factor Z_q and mass renormalization factor Z_m from the bilinear operators obtained using non-perturbative renormalization method(NPR) in the RI-MOM scheme with HYP improved staggered fermions on fine lattice.
- We use fine ensembles of MILC asqtad lattices (N_f = 2 + 1) with 28³ × 96 geometry and (a ≈ 0.08 fm, am_ℓ/am_s = 0.0062/0.031).
- We also present the dependence of lattice spacing for Z_q and Z_m by comparing the results of coarse and fine lattices.

Momentum in Reduced Brillouin Zone

• \tilde{p} is the momentum in reduced Brillouin zone.

$$p \in (-\frac{\pi}{a}, \frac{\pi}{a}]^4, \qquad \tilde{p} \in (-\frac{\pi}{2a}, \frac{\pi}{2a}]^4, \qquad p = \tilde{p} + \pi_B$$

where $\pi_B (\equiv \frac{\pi}{a}B)$ is cut-off momentum in hypercube.

▶ B : vector in hypercube. Each element is 0 or 1. ex) B = (0, 0, 1, 1)

・ロン ・四マ ・ヨン ・ヨン ・ヨー

Green's function

Bilinear Operator

$$O_i(y) = \sum_{AB} \overline{\chi}_i(y_A) \overline{(\gamma_S \otimes \xi_F)}_{AB} U_{i;AB}(y) \chi_i(y_B)$$

Green's function

$$G_i(x_1, x_2, y) = \langle \chi_i(x_1) O_i(y) \overline{\chi}_i(x_2) \rangle$$

Green's function in momentum space

$$\begin{split} H(\widetilde{p} + \pi_A, \widetilde{q} + \pi_B, \widetilde{k} &= \widetilde{p} - \widetilde{q}) \\ &= \frac{1}{N} \sum_i^N \sum_{y \ CD} e^{-i\widetilde{k}y} \hat{S}_i(\widetilde{p} + \pi_A, y_C) \overline{(\gamma_S \otimes \xi_F)}_{CD} U_{i;CD}(y) \hat{S}_i(y_D, \widetilde{q} + \pi_B) \\ &= V \widetilde{H}(\widetilde{p} + \pi_A, \widetilde{q} + \pi_B) \end{split}$$

- i : gauge configuration index
- x_1 , x_2 : coordinates on the lattice with its spacing a.
- ▶ y : hypercube coordinates on the lattice with its spacing 2a, $y_A = 2y + A$

Amputated Green's function

Amputated Green's function

$$\widetilde{\Lambda}(\widetilde{p} + \pi_A, \widetilde{q} + \pi_B) = \sum_{CDEF} \widetilde{S}(\widetilde{p})_{AC}^{-1} \widetilde{H}(\widetilde{p} + \pi_C, \widetilde{q} + \pi_D)$$
$$\cdot \overline{\overline{(\gamma_5 \otimes \gamma_5)}}_{DF} [\widetilde{S}(\widetilde{p})^{-1}]_{FE}^{\dagger} \overline{\overline{(\gamma_5 \otimes \gamma_5)}}_{EB}$$

Projected amputated Green's function

$$\Gamma^{\alpha\beta}(\widetilde{p},\widetilde{q}) = \sum_{AB} \sum_{c_1c_2} [\widetilde{\Lambda}^{\alpha}_{c_1c_2}(\widetilde{p} + \pi_A, \widetilde{q} + \pi_B)\hat{\mathbb{P}}^{\beta}_{BA;c_2c_1}]$$

The projection operator is

$$\hat{\mathbb{P}}^{\beta}_{BA;c_2c_1} = \frac{1}{48} \overline{\overline{(\gamma^{\dagger}_{S'} \otimes \xi^{\dagger}_{F'})}}_{BA} \delta_{c_2c_1}$$

•
$$\alpha = (\gamma_S \otimes \xi_F), \ \beta = (\gamma_{S'} \otimes \xi_{F'})$$

• A, B: hypercube index, c : color index

$$\overline{(\gamma_S \otimes \xi_F)}_{CD} = \frac{1}{4} \operatorname{tr}[\gamma_C^{\dagger} \gamma_S \gamma_D \gamma_F^{\dagger}] \text{, where } \gamma_D = \gamma_1^{D_1} \gamma_2^{D_2} \gamma_3^{D_3} \gamma_4^{D_4}$$

$$\overline{(\gamma_S \otimes \xi_F)}_{AB} = \frac{1}{16} \sum_{CD} (-1)^{A \cdot C} \overline{(\gamma_S \otimes \xi_F)}_{CD} (-1)^{D \cdot B}$$

Renormalization of Projected Amputated Green's Function

The renormalization of projected amputated Green's function $\Gamma(\tilde{p}, \tilde{q})$ is

$$O_R^{\alpha} = Z^{\alpha\beta} O_B^{\beta}$$
$$\chi_R = Z_q^{1/2} \chi_B$$
$$\Gamma_R^{\alpha\sigma}(\tilde{p}, \tilde{q}) = \sum_{\beta} Z_q^{-1} Z^{\alpha\beta} \Gamma_B^{\beta\sigma}(\tilde{p}, \tilde{q})$$

As a matrix form,

$$\hat{\Gamma}_R(\tilde{p},\tilde{q}) = Z_q^{-1} \hat{Z} \cdot \hat{\Gamma}_B(\tilde{p},\tilde{q})$$

- α , β , σ : the indices to represent different operators.
- $\Gamma_{R(B)}$: renormalized(bare) projected amputated Green's function
- Z_q : the wave function renormalization factor for quark fields
- Z : the renormalization factor matrix.

RI-MOM scheme

The Regularization Independent Momentum-Subtraction (RI-MOM) scheme prescription is

$$\hat{\Gamma}_R(\tilde{p},\tilde{p}) = \hat{\Gamma}_{\text{tree}}(\tilde{p},\tilde{p}) = I ,$$

where $\hat{\Gamma}_{\text{tree}}(\tilde{p}, \tilde{p})$ is the projected amputated Green's function matrix calculated at the tree level.

Therefore, the renormalization factor is obtained from the following equation.

$$\hat{\Gamma}_{R}(\tilde{p}, \tilde{p}) = Z_{q}^{-1} \hat{Z} \cdot \hat{\Gamma}_{B}(\tilde{p}, \tilde{p}) = I$$
$$\hat{Z} = Z_{q} \cdot \hat{\Gamma}_{B}^{-1}(\tilde{p}, \tilde{p})$$

Simulation Detail

- ▶ $28^3 \times 96$ MILC asqtad lattice $(a \approx 0.08 fm, am_{\ell}/am_s = 0.0062/0.031)$.
- Landau gauge fixed, HYP smearing and Tadpole improvement.
- The number of configurations is 10.
- 5 valence quark masses (0.0062, 0.0124, 0.0186, 0.0248, 0.031)
- ▶ 9 external momenta in the units of $(\frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_t}, \frac{2\pi}{L_t})$.
- We use the jackknife resampling method to estimate statistical errors.

n(x, y, z, t)	$(a\tilde{p})^2$	$ a \tilde{p} $	GeV
(2, 3, 2, 9)	1.0968	1.2030	2.5684
(3, 3, 3, 7)	1.2528	1.5695	2.9337
(3, 3, 3, 8)	1.2782	1.6337	2.9931
(3, 3, 3, 10)	1.3371	1.7880	3.1312
(3, 4, 3, 9)	1.4349	2.0591	3.3602
(4, 3, 4, 10)	1.5789	2.4929	3.6973
(4, 4, 4, 10)	1.6868	2.8454	3.9501
(4, 4, 4, 12)	1.7418	3.0339	4.0788
(4, 4, 4, 14)	1.8046	3.2566	4.2259

Wave Function Renormalization Factor

For the conserved vector current, the renormalization factor $Z_V = 1$. Therefore

$$Z_V = Z_q^{\text{RI-MOM}} \cdot [\Gamma_B^{-1}(\tilde{p}, \tilde{p})]^V = 1$$

 $\label{eq:RIMOM} Z_q^{\text{RI-MOM}} = \Gamma_B^V(\tilde{p},\tilde{p})\,,$

We convert the raw data in the RI-MOM scheme from $\mu(=|\tilde{p}|)$ to the common scale $\mu_0(=3\text{GeV})$ using four-loop RG evolution factor $U_q(\mu_0, \mu)$.

$$Z_q^{\text{RI-MOM}}(\mu_0) = U_q(\mu_0, \mu) Z_q^{\text{RI-MOM}}(\mu), \qquad (\mu_0 = 3 \text{GeV}, \quad \mu^2 = \widetilde{p}^2)$$

m-fit (fitting with respect to quark mass)

We fit the data with respect to quark mass for a fixed momentum to the following function f.

$$f(m, a, \tilde{p}) = c_1 + c_2 \cdot am,$$

where c_i is a function of \tilde{p} . We call this m-fit. After m-fit, we take the $c_1(a, \tilde{p})$ as chiral limit values.

p-fit (fitting with respect to reduced momentum) We fit $c_1(a, \tilde{p})$ to the following fitting function.

$$g(a,\tilde{p}) = b_1 + b_2(a\tilde{p})^2 + b_3((a\tilde{p})^2)^2 + b_4(a\tilde{p})^4$$

To avoid non-perturbative effects at small $(a\tilde{p})^2$, we choose the momentum window as $(a\tilde{p})^2 > 1$. Because we assume that those terms of $\mathcal{O}((a\tilde{p})^2)$ and higher order are pure lattice artifacts, we take the b_1 as Z_q in the RI-MOM scheme value. Here, $x_q = Z_q^{\text{RI-MOM}} (am = 0) - \langle b_4 \rangle (a\tilde{p})^4$

μ_0	b_1	b_2	b_3	b_4	$\chi^2/{\sf dof}$
3GeV	1.0589(14)	-0.1471(14)	0.00279(18)	0.0103(17)	0.26(13)

6) Q (*

Systematic Error

We convert the result from RI-MOM scheme to \overline{MS} scheme using four-loop RG running formula. The systematic error of $Z_a^{\overline{MS}}$ is estimated by two different ways.

▶ The first systematic comes from truncated higher order of the four-loop RG running evolution factor(RI-MOM $\rightarrow \overline{\text{MS}}$):($O(\alpha_s^4)$).

$$E_t = Z_q^{\text{RI-MOM}} \cdot (\alpha_s)^4$$

 The second systematic error comes from the difference in Z_q^{MS} from between the conserved vector and axial currents.

$$E_{\Delta} = |Z_q^{\overline{\mathrm{MS}}}(V \otimes S) - Z_q^{\overline{\mathrm{MS}}}(A \otimes P)|$$

The total systematic error is obtained adding two systematic errors in quadrature.

$$E_{tot} = \sqrt{E_t^2 + E_\Delta^2}$$

μ_0	$Z_q^{\overline{\mathrm{MS}}}$	E_t	E_{Δ}	E_{tot}
3GeV	1.0515(14)	0.0038	0.0155	0.0160

Comparison of Z_q between coarse and fine lattices

- coarse lattice : $20^3 \times 64$, $a \approx 0.12 fm$, $am_{\ell}/am_s = 0.01/0.05$
- fine lattice : $28^3 \times 96$, $a \approx 0.08 fm$, $am_{\ell}/am_s = 0.0062/0.031$

	coarse	fine
$Z_q^{\overline{\mathrm{MS}}}(3\mathrm{GeV})$	1.0595(84)(451)	1.0515(14)(160)

Mass Renormalization Factor

By the Ward identity, the mass renormalization factor is

$$Z_m = \frac{1}{Z_{S \otimes S}}$$

where $Z_{S\otimes S}$ is a renormalization factor of scalar bilinear operator with scalar taste.

$$(Z_q \cdot Z_m)^{\text{RI-MOM}} = (\frac{Z_q}{Z_{S\otimes S}})^{\text{RI-MOM}} = \Gamma^B_{S\otimes S}(\tilde{p},\tilde{p})\,,$$

We convert the raw data in the RI-MOM scheme from $\mu(=|\tilde{p}|)$ to the common scale $\mu_0(3\text{GeV})$ using four-loop RG evolution factor $U_m(\mu_0, \mu)$.

$$(Z_q \cdot Z_m)^{\text{RI-MOM}}(\mu_0) = U_m(\mu_0, \mu)(Z_q \cdot Z_m)^{\text{RI-MOM}}(\mu), \qquad (\mu_0 = 3 \text{GeV}, \quad \mu^2 = \tilde{p}^2)$$

m-fit (fitting with respect to quark mass)

We use the following fitting function:

$$f_{Z_q \cdot Z_m}(m, a, \tilde{p}) = c_1 + c_2(am) + c_3 \frac{1}{(am)^2},$$

μ_0	c_1	c_2	c_3	$\chi^2/{\sf dof}$
3GeV	1.25627(89)	-0.251(21)	0.00000061(38)	0.0021(88)

・ロ・・日・・日・・日・ シック

p-fit (fitting with respect to reduced momentum) We fit the $c_1(a, \tilde{p})$ to the following fitting function.

$$f_{Z_q \cdot Z_m}(am = 0, a\tilde{p}) = d_1 + d_2(a\tilde{p})^2 + d_3((a\tilde{p})^2)^2 + d_4(a\tilde{p})^4$$

Here, $y_m = (Z_q \cdot Z_m)^{\text{RI-MOM}}(am = 0) - \langle d_4 \rangle (a\tilde{p})^4$

μ_0	d_1	d_2	d_3	d_4	$\chi^2/{\sf dof}$
3GeV	1.2843(80)	-0.0253(67)	0.0025(12)	0.0115(72)	0.11(15)

✓) Q (
 16 / 18

Systematic Error

We take the d_1 as $(Z_q \cdot Z_m)$ at 3GeV in RI-MOM scheme. Using Z_q obtained from conserved vector current $(V \otimes S)$, the mass renormalization factor is calculated. We convert the result from RI-MOM scheme to $\overline{\mathrm{MS}}$ scheme using four-loop RG running formula. The systematic error of $Z_m^{\overline{\mathrm{MS}}}$ is estimated in the same way before.

▶ The first systematic comes from truncated higher order of the four-loop RG running evolution factor(RI-MOM $\rightarrow \overline{\text{MS}}$):($O(\alpha_s^4)$).

$$E_t = Z_m^{\text{RI-MOM}} \cdot (\alpha_s)^4$$

• The second systematic error comes from the difference between the $Z_m^{\overline{\text{MS}}}$ from $(S \otimes S)$ and $(P \otimes P)$ bilinear operators.

$$E_{\Delta} = |Z_m^{\overline{\mathrm{MS}}}(S \otimes S) - Z_m^{\overline{\mathrm{MS}}}(P \otimes P)|$$

> The total systematic error is obtained adding two systematic errors in quadrature.

$$E_{tot} = \sqrt{E_t^2 + E_\Delta^2}$$

μ_0	$Z_m^{\overline{\mathrm{MS}}}(S \otimes S)$	E_t	E_{Δ}	E_{tot}
3GeV	0.9922(58)	0.0044	0.0007	0.0044

Comparison of Z_m between coarse and fine lattices

- ▶ coarse lattice : $20^3 \times 64$, $a \approx 0.12 fm$, $am_{\ell}/am_s = 0.01/0.05$
- fine lattice : $28^3 \times 96$, $a \approx 0.08 fm$, $am_{\ell}/am_s = 0.0062/0.031$

	coarse	fine
$Z_m^{\overline{\mathrm{MS}}}(3\mathrm{GeV})$	0.866(36)(25)	0.9922(58)(44)