Evidence for a new $S U(4)$ symmetry with $J=2$ mesons

Markus Pak
Karl-Franzens-Universität Graz

The 33rd International Symposium on Lattice Field Theory (Lattice 2015) 2015.07.16
in collaboration with: M. Denissenya (Graz), L. Glozman (Graz)

Outline

Based on a recent publication: M. Denissenya, L. Glozman, M. Pak Phys. Rev. D 91, 11, 114512; hep-lat/1505.03285

1. Quasi-zero mode removal and spin-1 meson spectrum:

Evidence for a new $S U(4)$ symmetry, which contains $S U(2)_{L} \times S U(2)_{R}$ and $U(1)_{A}$ as subgroups
2. Is $S U(4)$ also applicable to higher spin mesons?

Spin-2 degeneracy patterns w.r.t. chiral and $S U(4)$ symmetry
3. Lattice Setup and Meson Spectroscopy
4. Results

Eigenvalues of correlation matrix and effective masses of spin-2 mesons (after quasi-zero mode removal) give clear evidence for $S U(4)$
5. Conclusions and Outlook

- Leonid Glozman's talk (tomorrow 15:00, „vacuum structure and confinement") more about $S U(4)$

Quasi-zero mode removal

M. Denissenya, L. Glozman, C. B. Lang, M. Pak, M. Schröck

- We remove the quasi-zero modes from the quark propagator via the prescription:

$$
S_{k}(x, y)=S_{\mathrm{FULL}}(x, y)-\sum_{i=1}^{k} \frac{1}{\lambda_{i}} v_{i}(x) v_{i}^{\dagger}(y)
$$

Banks-Casher: chiral condensate is connected with density of quasi-zero modes

Only a very small number of eigenvalues removed (10-30 out of millions)

- What happens with the spin-1 meson spectrum after removing the chiral condensate?
- Hadrons survive \longrightarrow confinement stays intact
- Chiral symmtry is restored \longrightarrow parity partners become mass degenerate
- but...

$J=1$ meson spectrum after quasi-zero mode removal

All iso-vector states become mass degenerate
Higher symmetry than chiral symmetry is observed

M Denissenya, L. Glozman, C. B. Lang; • All iso-vectors and all iso-scalars become Phys. Rev. D91 (2015) 3, 034505 mass degenerate

$S U(4)$ - symmetry

L. Glozman; Eur. Phys. J. A51 (2015) 3, 034505
L. Glozman, M. Pak; Phys. Rev. D92 (2015) 1, 016001

Not a symmetry of the QCD Lagrangian; emerges after quasi zero-mode removal
The fundamental vector is $\Psi=\binom{u}{d}$ with $\Psi \rightarrow \Psi^{\prime}=e^{i \boldsymbol{\epsilon} \cdot \boldsymbol{T} / 2} \Psi \equiv W \Psi$

$$
\left(\begin{array}{c}
u_{L}^{\prime} \\
u_{R}^{\prime} \\
d_{L}^{\prime} \\
d_{R}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)\left(\begin{array}{c}
u_{L} \\
u_{R} \\
d_{L} \\
d_{R}
\end{array}\right)
$$

Not only U and d quarks mix, but also the left- and right-handed components

All states of given J except one isoscalar state become mass degenerate via $S U(4)$

Has non-trivial consequences: implies that interaction of quarks with color-magnetic field is absent after quasi-zero mode removal

Chiral symmetry predictions for spin-2 mesons

Classification of states in the $\left(I_{L}, I_{R}\right)$ irreps of $S U(2)_{L} \times S U(2)_{R} \times \mathcal{C}_{i}$

$(0,0)$	$\omega_{2}\left(0,2^{--}\right)$		$f_{2}\left(0,2^{++}\right)$
$\begin{aligned} & (1 / 2,1 / 2)_{a} \\ & (1 / 2,1 / 2)_{b} \end{aligned}$	$\begin{aligned} & \pi_{2}\left(1,2^{-+}\right) \\ & U_{\mathrm{A}}(1) \\ & a_{2}^{\prime}\left(1,2^{++}\right) \end{aligned}$	$\begin{aligned} & \stackrel{S U_{\mathrm{A}}(2)}{\longleftrightarrow} \\ & \stackrel{S U_{\mathrm{A}}(2)}{\longleftrightarrow} \end{aligned}$	$\begin{aligned} & f_{2}^{\prime}\left(0,2^{++}\right) \\ & U_{\mathrm{A}}\left(0,2^{-+}\right) \end{aligned}$
$(1,0) \oplus(0,1)$	$a_{2}\left(1,2^{++}\right)$	$\stackrel{S U_{\mathrm{A}}(2)}{\longleftrightarrow}$	$\rho_{2}\left(1,2^{--}\right)$

Predictions from $S U(2)_{L} \times S U(2)_{R} \times U(1)_{A}$:

$a_{2} \longleftrightarrow \rho_{2}$

- No degeneracy between these two multiplets
- Not all iso-vectors are mass degenerate
- No constraints on masses of $\omega_{2}\left(0,2^{--}\right)$ and $f_{2}\left(0,2^{++}\right)$

$S U(4)$ symmetry predictions for spin-2 mesons

$(0,0)$	$\omega_{2}\left(0,2^{--}\right)$	$S U(4)$
$(1 / 2,1 / 2)_{a}$	$\pi_{2}\left(1,2^{-+}\right)$	
$(1 / 2,1 / 2)_{b}$	$a_{2}^{\prime}\left(1,2^{++}\right)$	
$(1,0) \oplus(0,1)$	$a_{2}\left(1,2^{++}\right)$	
$f_{2}\left(0,2^{++}\right)$		
$f_{2}^{\prime}\left(0,2^{++}\right)$		
$\eta_{2}\left(0,2^{-+}\right)$		
$\rho_{2}\left(1,2^{--}\right)$		

Predictions from $S U(4)$:

$$
f_{2} \longleftrightarrow \pi_{2} \longleftrightarrow f_{2}^{\prime} \longleftrightarrow a_{2}^{\prime} \longleftrightarrow \eta_{2} \longleftrightarrow a_{2} \longleftrightarrow \rho_{2}
$$

- All iso-vectors have to be mass degenerate
- No constraints on mass of $\omega_{2}\left(0,2^{--}\right)$

Lattice Setup and Meson Spectroscopy

Two-flavor dynamical Overlap configurations from JLOCD on $16^{3} \times 32$ lattice with $a=0.118 \mathrm{fm}$
S. Aoki et. al (2008)

Pion mass $M_{\pi}=289(2) \mathrm{MeV}$

Topological sector fixed to $Q_{T}=0$

83 gauge configurations

Jacobi smeared and derivative based quark propagators with different smearing widths

Spectroscopy via the variational method $C_{i j}(t)=\left\langle O_{i}(t) \bar{O}_{j}(0)\right\rangle$

$$
C(t) \vec{v}=\lambda_{n}(t) C\left(n_{0}\right) \vec{v} \quad \quad \lambda_{n}(t) \sim e^{-m_{n} t}
$$

- $S U(4)$ symmetry, if $\lambda_{a_{2}}=\lambda_{a_{2}^{\prime}}=\lambda_{\rho_{2}}=\lambda_{\pi_{2}}$

Results: $J=2$ Correlators

Before chiral symmetry restoration:

Results: $J=2$ Correlators

After chiral symmetry restoration:

Results: $J=2$ Effective masses after quasi-zero mode removal

States exist \longrightarrow confinement persists \longrightarrow masses can be extracted

Evolution of $J=2$ meson masses after quasi-zero mode removal

Higher symmetry?

Degeneracy of ground state spin-2 mesons with excited spin-1 mesons after quasi-zero mode removal? $\begin{array}{llllllll}0 & 2 & 6 & 10 & 16 & 20 & 30\end{array}$

No evidence for an even higher degeneracy, but for a precise statement repeat calcuation on larger volumes

Summary and Conclusions

- Spin-2 mesons also show emergent $S U(4)$ degeneracy pattern after quasi-zero mode removal

We expect, that this is general and $S U(4)$ applies for all $J \geq 1$ mesons
Allows for a simple energy quantization law

Predicts the absence of the interaction of quarks with the color-magnetic field after quasi-zero mode removal

Currently baryons are considered \longrightarrow also show $S U(4)$ degeneracy

Larger volumes are considered to probe a possible higher symmetry

- More about $S U(4)$ in Leonid Glozman's talk (tomorrow 15:00 in „vacuum structure and confinement")

