Encoding field theories into gravities

Sinya AOKI

Yukawa Institute for Theoretical Physics, Kyoto University

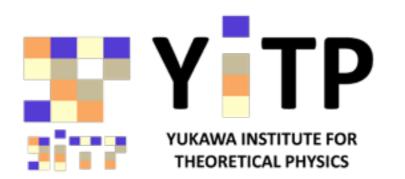
LATTICE LATTICE 2015

The 33rd International Symposium on Lattice Field Theory Kobe International Conference Center, Kobe, Japan Tuesday, July 14 — Saturday, July 18, 2015

Encoding field theories into gravities

Sinya AOKI

Yukawa Institute for Theoretical Physics, Kyoto University

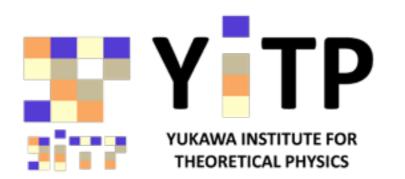


The 33rd International Symposium on Lattice Field Theory Kobe International Conference Center, Kobe, Japan Tuesday, July 14 — Saturday, July 18, 2015

Encoding field theories into gravities geometries

Sinya AOKI

Yukawa Institute for Theoretical Physics, Kyoto University



LATTICE LATTICE 2015

The 33rd International Symposium on Lattice Field Theory Kobe International Conference Center, Kobe, Japan Tuesday, July 14 — Saturday, July 18, 2015

Collaborators

K. Kikuchi (YITP), T. Onogi (Osaka Univ.)

References

S. Aoki, K. Kikuchi, T. Onogi, "Encoding field theories into gravities" arXiv:1505.00131[hep-th]

S. Aoki, K. Kikuchi, T. Onogi, "Gradient Flow of O(N) nonlinear sigma model at large N" JHEP 1504 (2015) 156 (arXiv:1412.8249[hep-th])

K. Kikuchi, Sat. 10:20-, Rm 402

Motivation

AdS/CFT correspondence

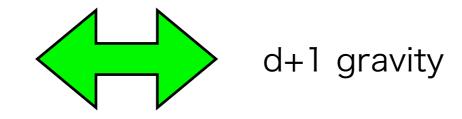
Maldacena 1997

Gravity/Gauge

huge numbers of evidences but no proof

open string/closed string duality?

d dimensional field theory



How can this be possible?

Different approach

In this talk, we propose a method to encode information of a d dimensional field theory into a d+1 dimensional geometry, and explicitly apply it to the 2-dimensional O(N) non-linear sigma model.

Our proposal

1. d-dimensional field -> (d+1)-dimensional one by gradient flow (GF) equation:

initial condition (boundary value) $\phi^{a,\alpha}(0,x) = \varphi^{a,\alpha}(x)$

a: large N index, α : Lorentz index

 $z = (\tau, x)$: d + 1 dimensional coordinate on $\mathbb{R}^+ \times \mathbb{R}^d$ with $\tau = 2\sqrt{t} \ge 0$

2. define the (d+1)-dimensional induced metric as

$$\hat{g}_{\mu\nu}(z) := g_{ab}(\phi(z))h_{\alpha\beta}\partial_{\mu}\phi^{a,\alpha}(z)\partial_{\nu}\phi^{b,\beta}(z)$$

Induced metric from $\mathbb{R}^+ \times \mathbb{R}^d$ on a curved space in \mathbb{R}^N with the metric g_{ab}

any correlation functions can be calculated as

$$\langle \hat{g}_{\mu\nu}(z) \rangle := \langle \hat{g}_{\mu\nu}(z) \rangle_S,$$

$$\langle \hat{g}_{\mu_1\nu_1}(z_1) \hat{g}_{\mu_2\nu_2}(z_2) \rangle := \langle \hat{g}_{\mu_1\nu_1}(z_1) \hat{g}_{\mu_2\nu_2}(z_2) \rangle_S,$$

$$\langle \hat{g}_{\mu_1\nu_1}(z_1) \cdots \hat{g}_{\mu_n\nu_n}(z_n) \rangle := \langle \hat{g}_{\mu_1\nu_1}(z_1) \cdots \hat{g}_{\mu_n\nu_n}(z_n) \rangle_S,$$

with
$$\langle \mathcal{O} \rangle_S := \frac{1}{Z} \int \mathcal{D}\varphi \, \mathcal{O}(\varphi) \, e^{-S}, \quad Z := \int \mathcal{D}\varphi \, e^{-S}$$

functional integral in d-dimensions

Key point 1

 $g_{\mu\nu}(z) \sim \partial_{\mu}\phi(z)\partial_{\nu}\phi(z)$ is expected to be finite as long as $\tau \neq 0$

GF: a kind of RG transformation (heat kernel type smearing)

 $\tau \to 0$ is UV while $\tau \to \infty$ is IR

cf. d dimensional induced metric $g_{\mu\nu}(x) \sim \partial_{\mu}\varphi(x)\partial_{\nu}\varphi(x)$ is badly divergent

Key point 2

the metric operator becomes classical in the large N limit

$$\langle \hat{g}_{\mu\nu}(z_1)\hat{g}_{\alpha\beta}(z_2)\rangle = \langle \hat{g}_{\mu\nu}(z_1)\rangle\langle \hat{g}_{\alpha\beta}(z_2)\rangle + O\left(\frac{1}{N}\right)$$

thanks to the large N factorization

Our proposal gives a correspondence between d-dimesnional field theory and a (d+1)-dimensional classical metric in the large N limit.

From the metric, we can determine the geometry of the (d+1)-dimensional space.

Example

O(N) non-linear sigma model in 2 dimensions

$$S = \frac{1}{2g^2} \int d^2x \, \sum_{a,b=1}^{N-1} g_{ab}(\varphi) \sum_{k=1}^2 \left(\partial_k \varphi^a(x) \partial^k \varphi^b(x) \right),$$

$$g_{ab}(\varphi) = \delta_{ab} + \frac{\varphi^a \varphi^b}{1 - \varphi \cdot \varphi}, \quad g^{ab}(\varphi) = \delta_{ab} - \varphi^a \varphi^b \qquad \qquad \varphi \cdot \varphi = \sum_{a=1}^{N-1} \varphi^a \varphi^a \\ \varphi^N = \pm \sqrt{1 - \varphi \cdot \varphi},$$

gap equation $1 = \lambda \int \frac{1}{d}$

$$= \lambda \int \frac{d^2q}{(2\pi)^2} \frac{1}{q^2 + m^2}$$

 $\lambda=g^2N$ is the 't Hooft coupling constant

Aoki-Kikuchi-Onogi, JHEP1504(2015)156(arXiv:1412.8249[hep-th])

$$\phi^{a}(t,p) = f(t)e^{-p^{2}t}\sum_{n=0}^{\infty} : X_{2n+1}(\varphi, p, t) :$$

 X_{2n+1} only contains φ^{2n+1} terms and is $O(1/N^{2n+1})$.

 $X_1^a(\varphi, p, t) = \varphi^a(p)$

$$f(t) = e^{-m^2 t} \sqrt{\frac{\log(1 + \Lambda^2/m^2)}{\operatorname{Ei}\left(-2t(\Lambda^2 + m^2)\right) - \operatorname{Ei}\left(-2tm^2\right)}},$$

$$\operatorname{Ei}(-x) = \int dx \, e^{-x} / x.$$

2-pt function
$$\langle \phi^a(t,x)\phi^b(s,y)\rangle_S = \int \frac{d^2q}{(2\pi)^2} \frac{e^{-q^2(t+s)}e^{iq(x-y)}}{q^2+m^2}$$
$$\times \delta_{ab}\frac{\lambda}{N}f(t)f(s) + O(N^{-2}).$$

Induced metric

 $\mathbb{R}^+ \times \mathbb{R}^2 \to S^{N-1} \ (N-1 \text{ dimensional sphere})$

$$\hat{g}_{\mu\nu}(z) := g_{ab}(\phi(z))h_{\alpha\beta}\partial_{\mu}\phi^{a,\alpha}(z)\partial_{\nu}\phi^{b,\beta}(z)$$

VEV $g_{\mu\nu}(z) := \langle \hat{g}_{\mu\nu}(z) \rangle$

$$g_{\tau\tau}(z) = -\frac{\tau h}{4} \frac{d}{d\tau} \left(\frac{\dot{f}}{f}\right) + O\left(\frac{1}{N}\right) \qquad \qquad g_{ij}(z) = \delta_{ij} \frac{h}{2} \frac{\dot{f}}{f} + O\left(\frac{1}{N}\right)$$

$$g_{\mu\nu}(\tau) = \begin{pmatrix} B(\tau) & 0 & 0 \\ 0 & A(\tau) & 0 \\ 0 & 0 & A(\tau) \end{pmatrix} \qquad 2B(\tau) = -\tau dA(\tau)/d\tau$$

$$A(\tau) = \frac{h}{2} \left[-m^2 - \frac{e^{-\tau^2 m^2/2}}{E_i(-\tau^2 m^2/2)\tau^2/2} \right]$$

finite as long as $\tau > 0$

Einstein equation and energy momentum tensor

 $\langle G_{\mu\nu}(\hat{g}_{\mu\nu})\rangle = G_{\mu\nu}(\langle \hat{g}_{\mu\nu}\rangle)$ in the large N limit

Assume the Einstein equation $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

$$T_{\mu\nu}(\tau) = \begin{pmatrix} T_{\tau\tau}(\tau) & 0 & 0\\ 0 & T_{ss}(\tau) & 0\\ 0 & 0 & T_{ss}(\tau) \end{pmatrix}$$

$$T_{\tau\tau}(\tau) = \frac{A_{,\tau}^2}{32\pi G A^2} \qquad \qquad A_{\tau}(\tau) := \frac{d}{d\tau} A(\tau)$$

$$T_{ss}(\tau) = \frac{1}{16\pi G} \left[\frac{1}{\tau^2} + \frac{A_{,\tau}}{\tau A} - \frac{A_{,\tau\tau}}{\tau A_{,\tau}} \right]$$

Masslessi limit and AdS space

$m \to 0 \text{ (massless) limit}$

$$A = -\frac{h}{\tau^2 \log m^2}$$

Take $h = -R_0^2 \log(m^2 R_0^2)$ R_0 : mass dimension -1 (length scale)

$$g_{\tau\tau} = \frac{R_0^2}{\tau^2}, \quad g_{ij} = \delta_{ij} \frac{R_0^2}{\tau^2}$$

$$ds^2 = \frac{R_0^2}{\tau^2} \left[d\tau^2 + (d\vec{x})^2 \right]$$

metric of (Euclidean) AdS space

AdS space emerges in the massless limit (CFT) !

$$G_{\mu\nu} = -\Lambda_0 g_{\mu\nu}, \qquad \Lambda_0 = -\frac{1}{R_0^2} < 0$$

 $m\tau \to 0$ limit (UV limit)

 $A \simeq -\frac{h}{\tau^2 \log(m^2 \tau^2)}$ UV singularity of 2-dim. original theory

$$ds^{2} = \frac{R_{0}^{2} \log(m^{2} R_{0}^{2})}{\tau^{2} \log(m^{2} \tau^{2})} \left[d\tau^{2} + (d\vec{x})^{2} \right]$$

$$\Lambda_0^{\text{eff}} = -\frac{1}{R_0^2} \frac{\log(m^2 \tau^2)}{\log(m^2 R_0^2)}$$

effective cosmological constant

Future studies and open issues

dictionary between geometry and field theory

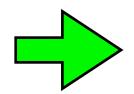
GR -> **FT**

As
$$m\tau \to 0/\infty$$
, $g_{\mu\nu} \sim \frac{1}{\tau^2 \log(m^2 \tau^2)}$

other quantities ?

FT-> GR interpretation of $T_{\mu\nu}^{\text{matter}}$?

$$T_{\mu\nu}^{\text{matter}} := T_{\mu\nu} + g_{\mu\nu} \frac{\Lambda_0}{8\pi G}$$



 $T_{\mu\nu}^{\rm matter} \to 0$

in UV/IR/massless limits

we can read off mass m and Z-factor

Our method can be applied to all large N models, and better if solvable.

Translational invariance of d dimensional theory $\Box \qquad g_{\mu\nu}$ depends only on τ .



Introduce boundaries/sources to create x-dependences

Finite T field theories => the black hole geometry ? (work in progress)

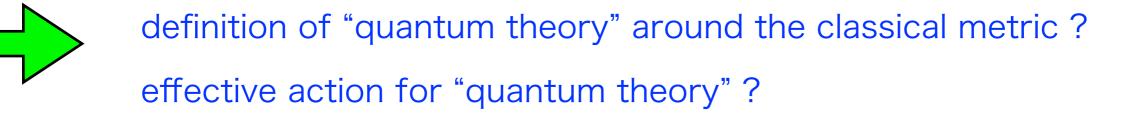
quantum fluctuations of the metric

Correlation functions can be calculated by the 1/N expansion.

ex.
$$\langle g_{\mu_1\nu_1}(z_1)g_{\mu_2\nu_2}(z_2)\rangle_c = O\left(\frac{1}{N}\right)$$

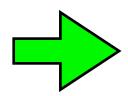
renormalizable or even finite ?

All correlation functions



choice for GF scheme

not unique



may give different gravity theories, but they are all equivalent.

new equivalent classes ?

Gauge theories

simple choices for the induced metric

$$g_{\mu\nu}(z) := h \sum_{i,j=1}^{d} \operatorname{Tr} D_{\mu} F_{ij}(z) D_{\nu} F^{ij}(z), \qquad \begin{array}{l} D_{i} \ (i = 1, \cdots, d) \\ D_{\tau} = \partial_{\tau} \\ \text{covariant derivative} \\ g_{\mu\nu}(z) := h \sum_{\alpha=0}^{d} \operatorname{Tr} F_{\mu\alpha}(z) F_{\nu}{}^{\alpha}(z), \qquad \begin{array}{l} F_{\mu\nu} := [D_{\mu}, D_{\nu}] \\ \text{Field strength} \end{array}$$

invariant under τ -independent gauge transformation

large N gauge theory in 2-dim ('t Hooft model)