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Motivation
AdS/CFT correspondence Maldacena 1997 Gravity/Gauge

huge numbers of evidences but no proof open string/closed string duality ? 

d dimensional field theory d+1 gravity 

How can this be possible ?

Different approach

In this talk, we propose a method to encode information of a d dimensional field 
theory into a d+1 dimensional geometry, and explicitly apply it to the 2-dimensional 
O(N) non-linear sigma model.



Our proposal
1. d-dimensional field -> (d+1)-dimensional one by gradient flow (GF) equation:

PROPOSAL

We consider the generic large N field ϕa,α(x) where x is d dimensional space-time coor-

dinate, a = 1, 2, · · · , is the large N index, while α represents other indices such as spinor or

vector indices, so that hαβϕa,α(x)ϕb,β(x) becomes Lorentz invariant with the constant tensor

hαβ. We denote the action of this theory S.

We first extend the d dimensional field ϕ(x) to φ(t, x) in d + 1 dimensions, using the

gradient flow equation as[5]

d

dt
φa,α(t, x) = −gab(φ(t, x))

δS

δϕb,α(x)

∣∣∣∣
ϕ→φ

, (1)

with an initial condition that φa,α(0, x) = ϕa,α(x), where gab is the metric of the space of

the large N index. Since the length dimension of t is 2 and t ≥ 0, we introduce new variable

τ = 2
√

t. (Here a factor 2 makes some latter results simpler. ) Then we denote d + 1

dimensional coordinate as z = (τ, x) and the field as φa,α(z).

We propose to define the induced d + 1 dimensional metric as

ĝµν(z) := gab(φ(z))hαβ∂µφ
a,α(z)∂νφ

b,β(z). (2)

Using the above definition, we then calculate the expectation values of gµν and its correlations

as

⟨ĝµν(z)⟩ := ⟨ĝµν(z)⟩S, (3)

⟨ĝµ1ν1(z1)ĝµ2ν2(z2)⟩ := ⟨ĝµ1ν1(z1)ĝµ2ν2(z2)⟩S, (4)

⟨ĝµ1ν1(z1) · · · ĝµnνn(zn)⟩ := ⟨ĝµ1ν1(z1) · · · ĝµnνn(zn)⟩S, (5)

where ⟨O⟩S is the expectation values of O(ϕ) in d dimensions with the action S as

⟨O⟩S :=
1

Z

∫
DϕO(ϕ) e−S, Z :=

∫
Dϕ e−S (6)

in the large N expansion. Even though the “composite” operator ĝµν(z) contains a product

of two local operators at the same point z, ⟨ĝµν(z)⟩ is finite as long as τ ̸= 0[6]. This is the

reason why we define the induced metric in d + 1 dimensions from φ, not the d dimensional

induced metric from ϕ, which badly diverges.

Thanks to the large N factorization, quantum fluctuations of the metric ĝµν are sup-

pressed in the large N limit. For example, the two point correlation function of ĝµν behaves

3
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initial condition (boundary value)

a : large N index, �: Lorentz index

metric

z = (�, x): d + 1 dimensional coordinate on R+ � Rd with � = 2
�

t � 0
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with

Induced metric from R+ � Rd on a curved space in RN with the metric gab

functional integral in d-dimensions



Key point 1

gµ�(z) � �µ�(z)���(z) is expected to be finite as long as � �= 0

GF: a kind of RG transformation (heat kernel type smearing)

� � 0 is UV while � �� is IR

d dimensional induced metric gµ�(x) � �µ�(x)���(x) is badly divergent

Key point 2

the metric operator becomes classical in the large N limitas

⟨ĝµν(z1)ĝαβ(z2)⟩ = ⟨ĝµν(z1)⟩⟨ĝαβ(z2)⟩ + O

(
1

N

)
, (7)

which shows that the induced metric ĝµν is classical in the large N limit, and quantum

fluctuations are sub-leading and can be calculated in the 1/N expansion. A use of the 1/N

expansion here seems important for a compatibility between non-zero VEV of the metric

and the general coordinate invariance in “quantum” gravity, since the metric is non-invariant

but the general coordinate invariance can not be broken spontaneously from an argument

a la Elitzur’s[7]. This inconsistency may be avoided in the large N , which corresponds to a

large degrees of freedom, necessary for the spontaneous symmetry breaking.

AN EXAMPLE: O(N) NON-LINEAR SIGMA MODEL IN TWO DIMENSION

As a concrete example of our proposal, we consider the O(N) non-linear sigma model in

two dimensions, whose action is given by

S =
1

2g2

∫
d2x

N−1∑

a,b=1

gab(ϕ)
2∑

k=1

(
∂kϕ

a(x)∂kϕb(x)
)
, (8)

where

gab(ϕ) = δab +
ϕaϕb

1 − ϕ · ϕ , gab(ϕ) = δab − ϕaϕb (9)

with ϕ ·ϕ =
∑N−1

a=1 ϕaϕa, and the N -th component of ϕ is expressed in terms of other fileds

as ϕN = ±
√

1 − ϕ · ϕ, so that the metric gab appears in the action. The three dimensional

metric gµν(z) will be extracted from this theory, according to our proposal.

Solution to the gradient flow equation in the large N

In the previous study[8], the solution of the gradient flow equation has been obtained in

the momentum space as

φa(t, p) = f(t)e−p2t
∞∑

n=0

: X2n+1(ϕ, p, t) : (10)

4

thanks to the large N factorization

cf.

Our proposal gives a correspondence between d-dimesnional field theory and a 
(d+1)-dimensional classical metric in the large N limit. 

From the metric, we can determine the geometry of the (d+1)-dimensional space.
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⟨ĝµν(z1)ĝαβ(z2)⟩ = ⟨ĝµν(z1)⟩⟨ĝαβ(z2)⟩ + O

(
1

N

)
, (7)
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where X2n+1 only contains ϕ2n+1 terms and is O(1/N2n+1). The leading order term X1 is

given by Xa
1 (ϕ, p, t) = ϕa(p) with

f(t) =
1√

1 − 2λJ(t)
, J(t) =

∫ t

0

dsI(s), (11)

I(t) =

∫
d2q

(2π)2

q2e−2q2t

q2 + m2
, (12)

where λ = g2N is the ’t Hooft coupling constant, and m is the dynamically generated mass,

which satisfies

1 =
λ

4π

∫
d2q

(2π)2

1

q2 + m2
. (13)

Introducing the momentum cut-off Λ, we have

f(t) = e−m2t

√
log(1 + Λ2/m2)

Ei (−2t(Λ2 + m2)) − Ei (−2tm2)
, (14)

where Ei(x) is the exponential integral function defined by Ei(−x) =
∫

d x e−x/x. The 2-pt

function, which dominate in the large N limit, is calculated as

⟨φa(t, x)φb(s, y)⟩S =

∫
d2q

(2π)2

e−q2(t+s)eiq(x−y)

q2 + m2

× δab
λ

N
f(t)f(s) + O(N−2). (15)

Induced metric

An induced metric for this model is given by

ĝµν(z) := hgab(φ(z))∂µφ
a(z)∂νφ

b(z), (16)

where z = (2
√

t, x) ∈ R+(= [0,∞]) × R2 and h is some constant, which will be determined

later. This is the induced metric from a three dimensional manifold R+ × R2 on the N − 1

dimensional sphere defined by φa.

The VEV of the metric, gµν , which does not depend on x due to the translational invari-

ance of the two dimensional O(N) non-linear sigma model, can easily be calculated in the

large N limit as

gij(τ) := ⟨ĝij(z)⟩ = h⟨gab(φ)∂iφ
a(t, x)∂jφ

b(t, x)⟩

=
h

2
δijλf 2(t)I(t) + O(N−1) ≃ h

2
δij

ḟ(t)

f(t)
(17)

5

gap equation 1 = �

�
d2q

(2�)2
1

q2 + m2



Solution to the GF equation in the large N

Aoki-Kikuchi-Onogi, JHEP1504(2015)156(arXiv:1412.8249[hep-th])
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which shows that the induced metric ĝµν is classical in the large N limit, and quantum

fluctuations are sub-leading and can be calculated in the 1/N expansion. A use of the 1/N

expansion here seems important for a compatibility between non-zero VEV of the metric

and the general coordinate invariance in “quantum” gravity, since the metric is non-invariant

but the general coordinate invariance can not be broken spontaneously from an argument

a la Elitzur’s[7]. This inconsistency may be avoided in the large N , which corresponds to a

large degrees of freedom, necessary for the spontaneous symmetry breaking.

AN EXAMPLE: O(N) NON-LINEAR SIGMA MODEL IN TWO DIMENSION

As a concrete example of our proposal, we consider the O(N) non-linear sigma model in

two dimensions, whose action is given by

S =
1

2g2

∫
d2x

N−1∑

a,b=1

gab(ϕ)
2∑

k=1

(
∂kϕ

a(x)∂kϕb(x)
)
, (8)

where

gab(ϕ) = δab +
ϕaϕb

1 − ϕ · ϕ , gab(ϕ) = δab − ϕaϕb (9)

with ϕ ·ϕ =
∑N−1

a=1 ϕaϕa, and the N -th component of ϕ is expressed in terms of other fileds

as ϕN = ±
√

1 − ϕ · ϕ, so that the metric gab appears in the action. The three dimensional

metric gµν(z) will be extracted from this theory, according to our proposal.

Solution to the gradient flow equation in the large N

In the previous study[8], the solution of the gradient flow equation has been obtained in

the momentum space as

φa(t, p) = f(t)e−p2t
∞∑

n=0

: X2n+1(ϕ, p, t) : (10)

4

where X2n+1 only contains ϕ2n+1 terms and is O(1/N2n+1). The leading order term X1 is

given by Xa
1 (ϕ, p, t) = ϕa(p) with

f(t) =
1√

1 − 2λJ(t)
, J(t) =

∫ t

0

dsI(s), (11)

I(t) =

∫
d2q

(2π)2

q2e−2q2t

q2 + m2
, (12)

where λ = g2N is the ’t Hooft coupling constant, and m is the dynamically generated mass,

which satisfies

1 =
λ

4π

∫
d2q

(2π)2

1

q2 + m2
. (13)

Introducing the momentum cut-off Λ, we have

f(t) = e−m2t

√
log(1 + Λ2/m2)

Ei (−2t(Λ2 + m2)) − Ei (−2tm2)
, (14)

where Ei(x) is the exponential integral function defined by Ei(−x) =
∫

d x e−x/x. The 2-pt

function, which dominate in the large N limit, is calculated as

⟨φa(t, x)φb(s, y)⟩S =

∫
d2q

(2π)2

e−q2(t+s)eiq(x−y)

q2 + m2

× δab
λ

N
f(t)f(s) + O(N−2). (15)

Induced metric

An induced metric for this model is given by

ĝµν(z) := hgab(φ(z))∂µφ
a(z)∂νφ

b(z), (16)

where z = (2
√

t, x) ∈ R+(= [0,∞]) × R2 and h is some constant, which will be determined

later. This is the induced metric from a three dimensional manifold R+ × R2 on the N − 1

dimensional sphere defined by φa.

The VEV of the metric, gµν , which does not depend on x due to the translational invari-

ance of the two dimensional O(N) non-linear sigma model, can easily be calculated in the

large N limit as

gij(τ) := ⟨ĝij(z)⟩ = h⟨gab(φ)∂iφ
a(t, x)∂jφ

b(t, x)⟩

=
h

2
δijλf 2(t)I(t) + O(N−1) ≃ h

2
δij

ḟ(t)

f(t)
(17)
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Induced metric

gij(z) = �ij
h

2
ḟ

f
+ O

�
1
N

�

gµ�(�) =

�

�
B(�) 0 0

0 A(�) 0
0 0 A(�)

�

�

g�� (z) = ��h

4
d

d�

�
ḟ

f

�
+ O

�
1
N

�

for i, j = 1, 2, where we use an equality that ḟ(t) := df(t)/dt = λf(t)3I(t), while we have

giτ (τ) = gτ i(τ) = 0 for i = 1, 2, and

gττ (τ) =
τ 2h

4

〈
φ̇a(t, x)gab(φ(t, x))φ̇b(t, x)

〉
. (18)

Using the gradient flow equation and taking the large N limit, we have

gττ (τ) ≃ τ 2h

4

[
⟨∇2φ ·∇2φ⟩ − ⟨φ ·∇2φ⟩2

]

= −τh

4

d

dτ

(
ḟ

f

)
. (19)

Thus the expectation values of the induced metric turns out to be diagonal as gµν(τ) =

diag(B(τ), A(τ), A(τ)) where A(τ) =
h

2

ḟ(t)

f(t)

∣∣∣
t=τ2/4

, hence also 2B(τ) = −τdA(τ)/dτ , is

finite in the Λ → ∞ limit as

A(τ) =
h

2

[
−m2 − e−τ2m2/2

Ei(−τ 2m2/2)τ 2/2

]
. (20)

Einstein equation and energy momentum tensor

To know what kind of geometry is described by gµν , we compute the curvature tensor in

this subsection. Furthermore, assuming that the geometry satisfies the Einstein equation,

we can also determine the ”energy momentum tensor” in three dimensions.

We first calculate Christoffel symbols, defined by Γα
µν := gαβ (gβµ,ν + gβν,µ − gµν,β) /2,

where f,µ means the derivative of f with respect to xµ, from our induced metric gij = δijA,

gij = δij/A, gττ = B, gττ = 1/B, giτ = gτ i = giτ = gτ i = 0. We then obtain Γτ
ττ = B,τ/(2B),

Γτ
ij = −δijA,τ/(2B), Γi

τj = δijA,τ/(2A). Note that the VEV of composite operators such as

Γα
µν(ĝ) can be evaluated from the VEV of ĝ, thanks to the large N factorization: ⟨Γα

µν(ĝ)⟩ =

Γα
µν(g) in the large N limit.

From the curvature tensor, Rα
βµν := ∂µΓα

νβ − ∂νΓα
µβ + Γα

µλΓ
λ
νβ −Γα

νλΓ
λ
µβ, the Ricchi tensor,

Rβν := Rα
βαν , is calculated as Rττ =

1

2

[
A2

,τ

A2
− 2

A,ττ

A
+

A,τB,τ

AB

]
, Rτ i = Riτ = 0, Rij =

δij
1

4B2
[A,τB,τ − 2A,ττB], so that the Ricchi scalar, R = gττRττ + gijRij is given by R =

A2
,τ/(2A

2B) − 2A,ττ/(AB) + A,τB,τ/(AB2) .
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finite as long as � > 0

R+ � R2 � SN�1 (N � 1 dimensional sphere)

VEV gµ�(z) := �ĝµ�(z)�

PROPOSAL

We consider the generic large N field ϕa,α(x) where x is d dimensional space-time coor-

dinate, a = 1, 2, · · · , is the large N index, while α represents other indices such as spinor or

vector indices, so that hαβϕa,α(x)ϕb,β(x) becomes Lorentz invariant with the constant tensor

hαβ. We denote the action of this theory S.

We first extend the d dimensional field ϕ(x) to φ(t, x) in d + 1 dimensions, using the

gradient flow equation as[5]

d

dt
φa,α(t, x) = −gab(φ(t, x))

δS

δϕb,α(x)

∣∣∣∣
ϕ→φ

, (1)

with an initial condition that φa,α(0, x) = ϕa,α(x), where gab is the metric of the space of

the large N index. Since the length dimension of t is 2 and t ≥ 0, we introduce new variable

τ = 2
√

t. (Here a factor 2 makes some latter results simpler. ) Then we denote d + 1

dimensional coordinate as z = (τ, x) and the field as φa,α(z).

We propose to define the induced d + 1 dimensional metric as

ĝµν(z) := gab(φ(z))hαβ∂µφ
a,α(z)∂νφ

b,β(z). (2)

Using the above definition, we then calculate the expectation values of gµν and its correlations

as

⟨ĝµν(z)⟩ := ⟨ĝµν(z)⟩S, (3)

⟨ĝµ1ν1(z1)ĝµ2ν2(z2)⟩ := ⟨ĝµ1ν1(z1)ĝµ2ν2(z2)⟩S, (4)

⟨ĝµ1ν1(z1) · · · ĝµnνn(zn)⟩ := ⟨ĝµ1ν1(z1) · · · ĝµnνn(zn)⟩S, (5)

where ⟨O⟩S is the expectation values of O(ϕ) in d dimensions with the action S as

⟨O⟩S :=
1

Z

∫
DϕO(ϕ) e−S, Z :=

∫
Dϕ e−S (6)

in the large N expansion. Even though the “composite” operator ĝµν(z) contains a product

of two local operators at the same point z, ⟨ĝµν(z)⟩ is finite as long as τ ̸= 0[6]. This is the

reason why we define the induced metric in d + 1 dimensions from φ, not the d dimensional

induced metric from ϕ, which badly diverges.

Thanks to the large N factorization, quantum fluctuations of the metric ĝµν are sup-

pressed in the large N limit. For example, the two point correlation function of ĝµν behaves

3



Einstein equation and energy momentum tensor
We finally calculate the Einstein tensor, Gµν := Rµν − 1

2Rgµν , and obtain Giτ = Gτ i = 0,

Gττ =
A2

,τ

4A2
, Gij = δij

[
A,ττ

2B
− A,τB,τ

4B2
−

A2
,τ

4AB

]
=

δij

2

[
1

τ 2
+

A,τ

τA
− A,ττ

τA,τ

]
, where we have

used the relation that B = −τA,τ/2 in the last equality.

Assuming the Einstein equation, Gµν = 8πGTµν , we thus extract the energy momentum

tensor as

Tµν = diag(Tττ , Tii, Tii), (21)

Tττ =
A2

,τ

32πGA2
, Tii =

1

16πG

[
1

τ 2
+

A,τ

τA
− A,ττ

τA,τ

]
, (22)

where A is given in eq. (20). Note that gττ = −τA,τ/2 and gij = δijA.

Massless limit and AdS (dS) space

We consider the massless limit (m → 0), where A and its derivatives are given by

A ≃ − 1

τ 2

h

log(m2)

[
1 + O

(
1

log(m2)

)]
, (23)

A,τ ≃ −2A/τ and A,ττ ≃ 6A/τ 2. We here use the expansion Ei(−x) = log x + γ +
∑∞

n=1(−x)n/(n · n!). In order to have non-zero and finite gµν in the massless limit, we take

h = h0 log(m2), where h0 is m independent number, though m2 is a dynamical quantity, not

an input parameter. We thus obtain gττ = −h0

τ 2
, gij = −δij

h0

τ 2
, so that

ds2 = −h0

τ 2

[
dτ 2 + (dx⃗)2

]
. (24)

In this limit, the energy-momentum tensor becomes Tττ =
1

8πG

1

τ 2
= Tii, which is com-

pactly written as Tµν = − 1

8πGh0
gµν . Then the Einstein equation now reads

Gµν = Λ0gµν , Λ0 = − 1

h0
, (25)

which means that gµν describes Anti-de Sitter (de Sitter) space, which has a negative (pos-

itive) cosmological constant Λ0, for h0 > 0 (h0 < 0).

The massless limit corresponds to the UV fixed point. It is remarkable that the AdS

geometry is realized for the conformal field theory defined at the fixed point.
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Assume the Einstein equation

Tµ�(�) =

�

�
T�� (�) 0 0

0 Tss(�) 0
0 0 Tss(�)

�

�

T�� (�) =
A2

,�

32�GA2

Tss(�) =
1

16�G

�
1
�2

+
A,�

�A
� A,��

�A,�

�

A � (�) :=
d

d�
A(�)

�Gµ�(ĝµ�)� = Gµ�(�ĝµ��) in the large N limit



Masslessi limit and  AdS space

metric of (Euclidean) AdS space 

AdS space emerges  in the massless limit (CFT) ! 

Gµ� = ��0gµ� , �0 = � 1
R2

0

< 0

m� 0 (massless) limit

A = � h

�2 log m2

Take h = �R2
0 log(m2R2

0) R0 : mass dimension -1 (length scale)

g�� =
R2

0

�2
, gij = �ij

R2
0

�2

ds2 =
R2

0

�2

�
d�2 + (d�x)2

�



UV limit m� � 0 limit (UV limit)

A � � h

�2 log(m2�2) UV singularity of 2-dim. original theory

ds2 =
R2

0 log(m2R2
0)

�2 log(m2�2)
�
d�2 + (d�x)2

�

effective cosmological constant�e�
0 = � 1

R2
0

log(m2�2)
log(m2R2

0)

IR limits m� �� A � h

�2

ds2 = �R2
0 log(m2R2

0)
�2

�
d�2 + (d�x)2

�

�e�
0 =

1
R2

0 log(m2R2
0)

asymptotically AdS if log(m2R2
0) < 0

energy-momentum tensor Tµ� =
1

8�G�2 in UV/IR/massless limits



Future studies and open issues

dictionary between geometry and field theory

gµ� �
1

�2 log(m2�2)

other quantities ?

GR -> FT

FT-> GR interpretation of Tmatter
µ� ?

As m� � 0/�, we can read o� mass m and Z-factor

Tmatter
µ� := Tµ� + gµ�

�0

8�G

Tmatter
µ� � 0 in UV/IR/massless limits



other examples

Our method can be applied to all large N models, and better if solvable. 

Translational invariance of d dimensional theory gµ� depends only on � .

Introduce boundaries/sources to create x-dependences 

Finite T field theories => the black hole geometry ? (work in progress)



quantum fluctuations of the metric

Correlation functions can be calculated by the 1/N expansion. 

�gµ1�1(z1)gµ2�2(z2)�c = O

�
1
N

�

All correlation functions 

definition of “quantum theory” around the classical metric ?

renormalizable or even finite ?

ex.

effective action for “quantum theory” ? 

choice for GF scheme

not unique

may give different gravity theories, but they are all equivalent.

new equivalent classes ?



Gauge theories

simple choices for the induced metric

which is invariant under the τ -independent gauge transformation[2–4]. Here Fij is the field

strength and Di (i = 1, · · · , d) is the covariant derivative in d dimensions while Dτ = ∂τ .

Some other choices could also be possible, since ∂τAi is adjoint under the τ -independent

gauge transformation. It will be interesting to calculate the induced metric form the large

N gauge theory in two dimensions (’t Hooft model)[11] in our method.
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covariant derivative

invariant under � -independent gauge transformation

large N gauge theory in 2-dim (‘t Hooft model) 

problem, one may also try to determine some kind of action for quantum gravity by which

all correlation functions of ĝµν in our method can be reproduced.

Since the equation (1) is not an unique way to define the flow equation, and thus d + 1

dimensional field φ from d dimensional ϕ, a dependence of the induced gravity on the

flow equation should be investigated. Some unknown equivalences between different gravity

theories might emerge from this consideration.

Finally, in the case of gauge theories, simple choices for the induced metric may be

gµν(z) := h
d∑

i,j=1

Tr DµFij(z)DνF
ij(z), (26)

gµν(z) := h
d∑

α=0

Tr Fµα(z)Fν
α(z), (27)

both of which are invariant under the τ -independent gauge transformation[2–4]. Here Di

(i = 1, · · · , d) is the covariant derivative in d dimensions while Dτ := ∂τ , and then the field

strength is given as Fµν := [Dµ, Dν ] . It will be interesting to calculate the induced metric

form the large N gauge theory in two dimensions (’t Hooft model)[11] in our method.
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Fµ� := [Dµ, D� ]

Field strength


