
Exploring Complex-Langevin Methods for Finite-Density QCD

D. K. Sinclair and J. B. Kogut

• Introduction

• Complex Langevin for finite density Lattice QCD

• Zero Temperature Simulations

• Summary and future plans

1



Introduction

QCD at a finite chemical potential µ for quark number has a
complex action which prevents the direct application of simula-
tion methods based on importance sampling.

The Langevin equation is a stochastic differential equation for
the evolution of the classical fields in a fictitious time, which does
not rely on importance sampling.

The Langevin equation can be extended to complex actions by
complexifying the fields. In the case of QCD this means extend-
ing the gauge fields from SU(3) to SL(3,C).

Unfortunately, there is no proof that the long-time evolution of
the fields under this Complex Langevin equation (CLE) provides
a limiting value for observables. Even when this process does
converge, the values it provides for observables are not guaran-
teed to be correct.

Early attempts at applying the CLE to QCD were stymied by
runaway behaviour.
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Recently it has been noted that at least some of this undesir-
able behaviour is due to the production of unbounded gauge
transformations of compact gauge fields.

Such behaviour can be controlled by gauge transforming to a
gauge which minimizes the magnitudes of the gauge fields –
Gauge Cooling.

This has revived interest in the CLE for QCD at finite µ.

We are simulating QCD at zero temperature and finite µ for light
quarks using the CLE, to test directly if it converges and pro-
duces believable results.

We present very preliminary results of our explorations.
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Complex Langevin for finite density Lattice QCD
If S(U) is the gauge action after integrating out the quark fields,

the Langevin equation for the evolution of the gauge fields U in
Langevin time t is:
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d

dt
Ul


U

−1
l = −i δ

δUl
S(U) + ηl

where l labels the links of the lattice, and ηl = ηal λ
a. Here λa are

the Gell-Mann matrices for SU(3). ηal (t) are Gaussian-distributed
random numbers normalized so that:

〈ηal (t)ηbl′(t′)〉 = δabδll′δ(t− t′)

The complex-Langevin equation has the same form except that
the Us are now in SL(3,C). S, now S(U,µ) is

S(U,µ) = β
∑
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Tr{ln[M(U,µ)]}
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where M(U,µ) is the staggered Dirac operator. Note: backward
links are represented by U−1 not U†. Note also that we have
chosen to keep the noise term η real.

To simulate the time evolution of the gauge fields we use the
partial second-order formalism of Fukugita, Oyanagi and Ukawa.
For an update of the fields by a ‘time’ increment dt, this gives:

U (n+1/2) = eX0U (n)

X0 = dt
δ

δU
S(U (n), µ) + i

√
dtη(n)

U (n+1) = eγ(X0+X1)U (n)

X1 = dt
δ

δU
S(U (n+1/2), µ) + i

√
dtη(n)

where γ = 1
2 + 1

4dt and the Gaussian noise η is normalized such
that:

〈ηa(m)
l η

b(n)
l′ 〉 =


1 − 3

2
dt


 δ
abδll′δ

mn

To proceed, we replace the spacetime trace with a stochastic es-
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timator ξ

Tr{ln[M(U,µ)]} → ξ†{ln[M(U,µ)]}ξ ,
where ξ is a vector over space-time and colour of gaussian ran-

dom numbers, normalized so that:

〈ξ∗i(m)(x)ξj(n)(y)〉 = δijδxyδ
mn

which means, in particular, that the ξs inX0 andX1 are indepen-
dent, unlike the ηs. After performing δ

δU of ln(M) it is useful to
rearrange the terms proportional to U and U−1 so that this term
is antihermitian when µ = 0 and U is unitary. That way, in this
special case, the complex Langevin equation becomes the real
Langevin equation.

We apply adaptive updating, where if the force term becomes too
large, dt is decreased to keep it under control.

After each update, we adaptively gauge fix to the gauge which
minimizes the unitarity norm:

F (U) =
1

4V

∑
x,µTr


U†U + (U†U)−1 − 2


 ≥ 0
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Zero Temperature Simulations
µ = 0

For µ = 0 and infinite precision, Complex Langevin → Real
Langevin.

At 64-bit precision, roundoff allows the gauge fields to move
(slowly) off the SU(3) manifold.

For β = 5.2, m = 0.05 on an 84 lattice we observe runaway
solutions, even after Gauge Cooling!

For β = 5.6, m = 0.025 on a 124 lattice without gauge cooling
we observe runaway solutions.

With gauge cooling, the trajectory moves slowly off the SU(3)
manifold. After 100,000 updates (dt = 0.01, dtadaptive ≈
0.00108), so trajectory ≈ 108 time units, the unitarity norm ≈
2.5 × 10−8.

This we can probably tolerate, especially since we expect it to
improve with weaker couplings and larger lattices.
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For this run plaquette = 0.4351(1), RHMC = 0.43588(4), and
〈ψ̄ψ〉 = 0.208(2), RHMC 0.2142(8). Reasonable agreement
for a short run with an inexact algorithm.

Figure 1 shows unitarity norms as functions of update number
for runs with and without cooling. This is for 10-step cooling.
We tried cooling with 5-, 10-, 20- and 100-step cooling. 10 was
best.

8



Figure 1: Unitarity norms for runs on a 124 lattice. Red curve is for run without
gauge cooling. Blue curve is run with 10-step gauge cooling.
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µ 6= 0

We simulate on a 124 lattice at β = 5.6,m = 0.025 with µ > 0.

Potentially important µ values includemπ/2 ≈ 0.21 andmN/3 ≈
0.33 (masses from HEMCGC collaboration).

We start with a limited number of µ values to probe the various
regimes of the zero-temperature phase diagram.

The values we choose are 0.1, 0.2, 0.25, 0.35, 0.5, 0.9 and
1.5. In each case we start the simulation from an ordered start
and use a 5-step gauge cool.

The first thing to look for, is evidence that the trajectories for a
given set of parameters are restricted to a compact region of
the SL(3,C) manifold. Without this it is (almost) impossible for
these simulations to produce meaningful results.

If the simulations do converge to a limiting distribution, one must
then address the question is whether this is the correct limit.
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At µ = 1.5 we have performed sufficient updates for the unitar-
ity norm to level off, indicating that the gauge fields now evolve
in a compact domain. The evolution of this norm over the tra-
jectory is shown in figure 2.

The unitarity norm appears to have leveled off, indicating that
the system is evolving over a compact domain of SL(3,C)4V

The quark number density j0 = 2.9999(3). Hence the system
has reached saturation where j0 = 3, expected for large µ.
This is where each site is occupied with 3 quarks in a colour
singlet state (nucleon).

The chiral condensate 〈ψ̄ψ〉 = 0.2(2)×10−5 – small and con-
sistent with zero as expected.

The plaquette P = 0.4678(1), consistent with the idea that,
at saturation, the quarks are frozen out and the system approxi-
mates quenched QCD. The quenched plaquetteP = 0.47553(2).
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Figure 2: Unitarity norms for run at µ = 1.5 on a 124 lattice.

12



The total trajectory length ≈ 33 time-units. In fact, after equili-
bration, dtadaptive ≈ 0.000067.

To date, of the other µ values we are simulating, only µ = 0.1
shows signs of equilibrating. However, we suspect this is be-
cause these runs simply need more updates, since their unitar-
ity norms have yet to reach values achieved for the µ = 0.1
simulations.

We present ‘data’ for the quark-number densities (figure 3), the
chiral condensates (figure 4), and the plaquettes (figure 5) as
functions of µ with the understanding that these are expected
to change to be closer to the values at µ = 1.5 as the system
equilibrates (if it does). This is because, as the system equili-
brates, the gauge links move away from the SU(3) manifold.
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Figure 3: Quark number density as a function of µ. Errors not known.
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Figure 4: Chiral condensate as a function of µ. Errors not known.
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Figure 5: Plaquette as a function of µ. Errors not known. Dashed lines are at
quenched value.
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These very preliminary results – each point represents 40,000 –
300,000 updates – agree qualitatively with our expectations. We
will need to wait until each point has equilibrated to where it is
clear that the gauge fields are varying over a compact region in
the SL(3,C) manifold, before we can get truly quantitative results.
This will probably take longer for µ > mN/3, since we expect a
first-order transition to nuclear matter at µ ≈ mN/3. Since each
run is starting from the SU(3) manifold, we expect metastability
for µ > mN/3.
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Summary and Future Plans

•We apply Complex-Langevin simulations with gauge cooling to
lattice QCD at finite quark-number chemical-potential (µ) at zero
temperature.

• Our current simulations are on a 124 lattice with Nf = 2, β =
5.6, m = 0.025.

• Preliminary results look promising, but more simulations are
needed. Adaptive updating with gauge cooling does appear
to stabilize the algorithm. Do these simulations converge and
converge to the correct limit?

• Do we observe a phase transition to nuclear matter at µ ≈
mN/3?

• Is there a spurious transition at µ ≈ mπ/2?

• Do these simulations produce the expected 2-flavour colour-
superconductor at large µ (µ > mN/3)?
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• Smaller masses needed – m = 0.01?. Larger lattices, weaker
coupling...

• Current code is inefficient serial code – needs improvement.
When we are convinced that the algorithm works we will paral-
lelize our code.

•We will also investigate whether we can make the code fully
second-order – the Langevin equivalent of the R algorithm.

• If our 2-flavour simulations are successful, we will also simulate
Nf = 3 and try to observe the 3-flavour colour-superconductor
with its colour-flavour locking.

•We also plan to simulate at high temperature, near the finite-
temperature phase transition, and look for the critical endpoint.
How good is the resonance-gas model?
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I apologize for not listing those people who have contributed to
the renewed interest in Complex Langevin methods for QCD at
finite µ. You can be certain that their work will be referenced in the
writeup.

These simulations are being performed on PCs belonging to Ar-
gonne’s HEP Division, Edison and Carver at NERSC, and Blues
at LCRC Argonne.
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