Analytic computations of an effective lattice theory for heavy quarks

Jonas R. Glesaaen

Mathias Neuman, Owe Philipsen

Lattice Conference 2015 - July 16th

Advantages of the Effective Theory

- Dimensionally reduced theory
 - $4D \rightarrow 3D$
 - $U_{\mu}(x) \rightarrow L(x)$
- Very mild sign problem, most gauge fields integrated analytically
- Want to study the very dense limit, liquid gas transition

The Effective Theory

Using:

- The strong coupling expansion
- The hopping parameter expansion

$$\mathcal{Z} = \int \prod_{x} dL(x) \exp\{-S_{\text{eff action}}\}$$
(†)

- Previous Talk: Monte Carlo simulations of (†)
- Current Talk: Analytic calculation of $\ensuremath{\mathcal{Z}}$

The Effective Theory Action
$$S_{eff action} = S_0[L] + S_I[L]$$
Where $S_I[L]$ is made up of interactions at varying distances $S_I[L] = \sum_{terms dof} v_i(1, 2, ..., n_i)\phi_1[L]\phi_2[L]\cdots\phi_{n_i}[L]$

The Effective Theory Action $S_{\text{eff action}} = S_0[L] + S_I[L]$ Where $S_{I}[L]$ is made up of interactions at varying distances $S_{I}[L] = \sum \sum v_{i}(1, 2, ..., n_{i})\phi_{1}[L]\phi_{2}[L]\cdots\phi_{n_{i}}[L]$ terms dof Can be represented with connected graphs

The Effective Theory Action
$$S_I[L] = \sum_{terms} \sum_{dof} v_i(1, 2, ..., n_i) \phi_1[L] \phi_2[L] \cdots \phi_{n_i}[L]$$
In our theory:• $v_i(1, 2, ..., n_i) \rightarrow \{\lambda_i, h_i\} \times \text{geometry}$ • $\phi_i \rightarrow \{L_i, L_i^*, W_i\}$

Analytic Calculations N-point Linked Cluster Expansion

Classical Linked Cluster Expansion

The action consists of two-point interactions which can be expanded in a set of connected graphs.

Our Problem

The action contains *n*-point interactions that we can embed on a set of connected graphs.

 \hookrightarrow Two step embedding

The power of resummations

Using the resummed Linked Cluster Expansion as motivation

We can do the same resummation for the effective action itself, incorporating long-range effects

Results

Convergence

Convergence

14/17

Continuum comparison

Continuum Equation of State

Conclusion

Summary & Outlook

Summary

- Introduced the effective dimensionally reduced lattice theory
- Looked at how a consistent analytic calculation could be carried out
- Demonstrated convergence and comparisons with numerics

Summary & Outlook

Outlook

- Use the analytic results as a tool to study the characteristics of the effective theory
- Find analytic resummation schemes to incorporate long-range effects

Backup slides

Put a line of plaquettes in the time direction

Integrate over all spatial gauge links

What remains is an interaction between Polyakov Loops

┌ Effective Gluon Interactions

$$S_{\mathrm{eff\,gluon}} \sim \lambda \sum_{\langle x,y
angle} L(x) L^*(y)$$

Can produce a closed quark loop with multiple temporal windings

Once again integrate out spatial links

Producing an interaction between the *W* objects

┌ Effective Quark Interactions

$$S_{
m eff\, quarks} \sim h_2 \sum_{\langle x,y
angle} W(x) W(y)$$

EoS in lattice units

