

Effects of higher dimension operators on the Standard Model Higgs sector.

Oscar Åkerlund* Philippe de Forcrand Jakob Steinbauer

LATTICE 2015 Kobe, July 15, 2015

Electro-weak stability

- As the standard model couplings are run to very high energy the Higgs self-interaction λ turns negative at some point (~ 10^{10..12} GeV).
- New physics above the Electroweak scale can make the effective potential stable.
- In an Effective Field Theory language the new physics enters as higher dimension operators suppressed by their typical energy scale.
- The EFT approach captures general aspects of any UV completion of the SM.

Baryogenesis

- One important aspect where higher dimension operators can play a role is Electroweak Baryogenesis.
- To create a matter-anti-matter asymmetry a strong first order EW phase transition is needed.
- In the SM the phase transition is only first order for a Higgs mass below 72 GeV but higher dimension operators may raise the critical value of the Higgs mass above the measured 125 GeV.

Goal of the presentation:

- To determine the impact of higher dimension operators on the SM.
- We need a non-perturbative method because of the large Higgs-top Yukawa coupling and the finite temperature phase transition.
- Since a lattice formulation of the full SM is missing we consider separately two sectors of the SM:
 - The Higgs-Yukawa sector consisting of the Higgs field and all the fermions.
 - The Gauge-Higgs sector consisting of the SU(2) gauge fields and the Higgs field.
- We consider the simplest operator |\u03c6|⁶, which is suppressed by two powers of the scale of new physics M_{BSM}, as a proxy for UV-completion.

1) The Higgs-Yukawa model

- Poor man's version of the Standard Model which nonetheless captures the nonperturbative chiral Higgs-top interaction.
- The Higgs and Yukawa parts of the Lagrangian are given by:

$$\mathcal{L}_{\rm H} = |\partial_{\mu}\phi|^{2} + m_{0}^{2} |\phi|^{2} + \lambda_{4} |\phi|^{4} + \lambda_{6} M_{\rm BSM}^{-2} |\phi|^{6}$$

$$\mathcal{L}_{\rm tb} = \overline{\Psi}_t \partial \!\!\!/ \Psi_t + y_b \overline{\Psi}_{t,\rm L} \phi b_{\rm R} + y_t \overline{\Psi}_{t,\rm L} \phi \overline{t}_{\rm R} + \text{h.c.} \qquad \widetilde{\phi} = i \tau_2 \phi^{\dagger}$$

where $\Psi_t = (t, b)^{\intercal} = (t_{\rm L}, t_{\rm R}, b_{\rm L}, b_{\rm R})^{\intercal}$ and $\Psi_{t, \rm L} = (t_{\rm L}, b_{\rm L})^{\intercal}$.

Extended Mean Field Theory (EMFT)

OA, P. de Forcrand, P. Werner and A. Georges *Phys. Rev. D* 88 125006 (2013) [arXiv:1305.7136] OA, P. de Forcrand, P. Werner and A. Georges *Phys. Rev. D* 90, 065008 (2014) [arXiv:1405.6613]

- We solve the model approximately by using an extended version of Mean Field Theory which takes also quadratic fluctuations into account.
- The original 4d problem reduces to a 0d problem with some self-consistency conditions which can be solved at a very low computational cost.
- EMFT can be formulated in any finite or infinite box which gives access to finite volume and finite temperature effects.
- EMFT yields an implicit action where expectation value and propagation (self-energy) need to be solved for self-consistently.

Bench-marking the EMFT approximation

- EMFT has already proved to be very accurate on ϕ^4 models.
- To check that the fermions are treated correctly we compare to full Monte Carlo simulations of the Higgs-Yukawa model [1].
- The results are very encouraging (see next slide).
- Due to the large scale separation $M_{\rm BSM} \gg v$ and the Goldstone bosons, Monte Carlo simulations suffer from prohibitive finite size effects. With EMFT, infinite volume is available at no extra cost.
- Moreover, the Monte Carlo simulation suffers from a "sign problem" unless the fermions are mass-degenerate whereas EMFT can handle the physical case.

[1] P. Hegde, K. Jansen, C. -J. D. Lin and A. Nagy PoS LATT13 [arXiv:1310.6260]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich DPHYS Department of Physics Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich DPHYS Department of Physics

 $\lambda_6 = 0.1$, "perturbative"

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich DPHYS Department of Physics

 $\lambda_6 = 1$, "non-perturbative"

Because of massless Goldstone bosons, the finite volume corrections are power like \rightarrow major problem for Monte Carlo simulations.

DPHYS

Department of Physics

Lowering the Higgs mass bound

 \sim Derivative of the effective potential, $M_{BSM} = 50 \text{ TeV}$

Even when $M_{\rm BSM}$ is as heavy as 50 TeV, $m_{\rm Higgs}$ can be as small as 10 GeV

LATTICE 2015

Finite temperature transition (no gauge fields)

2) Gauge-Higgs

- Perturbatively, the coefficient of the \u03c6³ term which enables a first order transition gets important contributions from the gauge coupling.
- For simplicity the fermions are left out. Well justified in the light of the previous results.
- Lattice action:

$$egin{split} \mathcal{L}_{\mathrm{GH}} &= -\sum_{\mu}\kappa_{\mu}\phi^{\dagger}(x)U_{\mu}(x)\phi(x+\hat{\mu})+|\phi(x)|^{2} \ &+\lambda\left(|\phi(x)|^{2}-1
ight)^{2}-rac{1}{2}\sum_{\mu>
u}eta_{\mu}\mathrm{Re}\mathrm{Tr}m{P}_{\mu
u}(x). \end{split}$$

Anisotropy: $\kappa_i = \kappa / \gamma_{\kappa}, \ \kappa_4 = \kappa \gamma_{\kappa}, \ \beta_i = \beta / \gamma_{\beta}, \ \beta_4 = \beta \gamma_{\beta}.$

Anisotropy

- In order to keep the number of spatial lattice sites small at high temperatures we used an anisotropic action.
- At tree level $\gamma_{\kappa} = \gamma_{\beta} = \xi \equiv a_s/a_t > 1$ but they get renormalized by quantum effects and have to be tuned.

Perturbation theory

 As a cross check we compare the measured anisotropies to one loop perturbation theory.

 We find very good agreement as well as a typo in the literature [1].

[1] F. Csikor, Z. Fodor, and J. Heitger Phys. Rev. D 58 094504 (1998)

Locating the critical endpoint

- Once the anisotropies have been tuned we determine the phase boundary in the (κ, λ)-plane.
- Somewhere on this line, in the direction of increasing λ, the transition turns from first order to crossover at a critical endpoint, which we wish to locate.

Locating the critical endpoint

- At the critical endpoint the model is in the universality class of the 3d lsing model.
- We measure the 4th Binder cumulant of $\langle \phi \rangle$ along the critical line and look for the λ where it equals the 3*d* Ising value $B_{4,c} = 1.604$. At this point we measure the T = 0 Higgs-W boson mass ratio $R_{\rm H,w}$.

Locating the critical endpoint

At the critical quartic coupling the distribution of the expectation value of the Higgs field contains two almost merged peaks.

3d Ising [1]

[1] K. Rummukainen et al. Nucl. Phys. B 532 283-314 (1998)

LATTICE 2015

Adding the ϕ^6 operator

- The ϕ^6 operator is added by reweighing the configurations obtained at $\lambda_6 = 0$.
- Since the critical line $\kappa_c(\lambda)$ moves as a function of $\lambda_6 \equiv \Lambda^{-2}$ we have to reweigh in the three variables κ, λ and λ_6 simultaneously.
- We can then anew locate the critical endpoint and measure the T = 0 mass ratio.

LATTICE 2015

• We can then extrapolate to a mass ratio of 125/80 to obtain a rough estimate of the scale of new physics needed to yield a first order transition at $m_H = 125$ GeV.

[1] C. Grojean, G. Servant, and J. D. Wells, *Phys. Rev. D* 71 036001 (2005)

Conclusions

- Sizable deviations from 1-loop results, nonperturbative method crucial.
- Higher dimension operators can stabilize the Higgs potential even at negative quartic couplings.
- EMFT approximation accurately describes the nonperturbative physics.
- In the Higgs-Yukawa model the φ⁶ operator is not enough to make the finite temperature phase transition first order.
- In the Gauge-Higgs model, on the other hand, it strengthens the transition and could make EW baryogenesis viable if the new physics scale is 1 – 2 TeV.

Thank you for your attention!

First order line in the (λ_4 , M_{BSM})-plane

3rd order cumulant

We use the thrird order cumulant to determine the critical κ.

Extended Mean Field Theory (EMFT)

 We assume small fluctuations around the vacuum expectation value (vev).

$$oldsymbol{\Phi}_{x}=(\hat{h}_{x},\hat{g}_{1,x},\hat{g}_{2,x},\hat{g}_{3,x})^{\intercal}+(\hat{
u},0,0,0)^{\intercal}\equiv\delta\Phi_{x}^{\intercal}+\langle\Phi
angle^{\intercal}\,,$$

The hopping term can be expressed as:

$$\Delta S = -2\kappa\sum_{\pm\mu}\delta \Phi_0^{\intercal}\delta \Phi_\mu - 4d\kappa \hat{v}\hat{h}_0.$$

- We can integrate out all fields except Φ_0 at the cost of new couplings, $c_p \Phi_0^p, \ p \ge 2$.
- Truncating at second order is enough to capture most of the dynamics, cf. mass renormalization.
- The effective action becomes:

$$\begin{split} S_{\mathsf{EMFT}} = & \Phi_0^{\mathsf{T}} (\boldsymbol{I}_4 - \boldsymbol{\Delta}) \Phi_0 + \hat{\lambda} \left(\| \Phi_0 \|^2 - 1 \right)^2 - 2 \hat{\nu} (\hat{\nu} + \hat{h}) (2d\kappa - \Delta_1) \\ &+ \operatorname{TrLog} \left(\boldsymbol{M} (\| \Phi_0 \|) \right) + \boldsymbol{V}_{\mathsf{BSM}} (\| \Phi_0 \|) \end{split}$$

• Where $\Delta = \text{diag}(\Delta_1, \Delta_2, \Delta_2, \Delta_2)$ emulates propagation in the effective bath.

Self-consistency equations

We have introduced three unknowns in the action so we need three self-consistency conditions:

1.
$$\langle \Phi_0^{\mathsf{T}} \rangle = (\hat{\nu}, 0, 0, 0)^{\mathsf{T}}$$

2. $2 \langle \hat{h}_0^2 \rangle_c = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{1}{\frac{1}{2 \langle \hat{h}_0^2 \rangle_c} + \Delta_1 - 2\kappa \sum_\mu \cos(p_\mu)}$
3. $2 \langle \hat{g}_{i,0}^2 \rangle = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{1}{\frac{1}{2 \langle \hat{g}_{i,0}^2 \rangle} + \Delta_2 - 2\kappa \sum_\mu \cos(p_\mu)}$

The fermion determinant

- In the EMFT approximation the fermions see the uniform field $\|\Phi_0\| = \sqrt{(\hat{v} + \hat{h}_0)^2 + \hat{g}_{1,0}^2 + \hat{g}_{2,0}^2 + \hat{g}_{3,0}^2} \Rightarrow$ the fermion matrix is diagonal in Fourier space.
- We can choose a basis for the determinant where the different flavors decouple:

$$M(\|\Phi_0\|)_{ff'} \to \left(\partial \!\!\!/ + y_f \sqrt{2\kappa} \|\Phi_0\|\right) \delta_{ff'}$$

Fermions discretized using the Neuberger overlap operator which respects chiral symmetry up to $O(a^2)$ corrections.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The fermion matrix becomes:

$$M_f^{(\mathrm{ov})} = D^{(\mathrm{ov})} + y_f \sqrt{2\kappa} \|\Phi\| \left(I_4 - \frac{1}{2}D^{(\mathrm{ov})}\right).$$

■ Since ||**Φ**|| is constant we can calculate the TrLog efficiently in Fourier space:

$$\begin{aligned} \operatorname{TrLog}\left(M_{f}^{(\text{ov})}\right) &= 2 \int \frac{\mathrm{d}^{4} p}{(2\pi)^{4}} \log \left|\nu(p) + y_{f} \sqrt{2\kappa} \|\Phi_{0}\| \left(1 - \frac{\nu(p)}{2}\right)\right|^{2} \\ \nu(p) &= 1 + \frac{i \sqrt{\tilde{p}^{2}} + \frac{1}{2} \hat{p}^{2} - 1}{\sqrt{\tilde{p}^{2} + \left(\frac{1}{2} \hat{p}^{2} - 1\right)^{2}}} \\ \tilde{p}^{2} &= \sum_{\mu} \sin^{2}(p_{\mu}), \ \hat{p}^{2} = 4 \sum_{\mu} \sin^{2}\left(\frac{p_{\mu}}{2}\right) \end{aligned}$$