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Electro-weak stability

� As the standard model couplings are run to very high energy the
Higgs self-interaction λ turns negative at some point (∼ 1010..12 GeV).

� New physics above the Electroweak scale can make the effective
potential stable.

� In an Effective Field Theory language the new physics enters as
higher dimension operators suppressed by their typical energy scale.

� The EFT approach captures general aspects of any UV completion of
the SM.
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Baryogenesis

� One important aspect where higher dimension operators can play a
role is Electroweak Baryogenesis.

� To create a matter-anti-matter asymmetry a strong first order EW
phase transition is needed.

� In the SM the phase transition is only first order for a Higgs mass
below 72 GeV but higher dimension operators may raise the critical
value of the Higgs mass above the measured 125 GeV.
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Goal of the presentation:

� To determine the impact of higher dimension operators on the SM.
� We need a non-perturbative method because of the large Higgs-top

Yukawa coupling and the finite temperature phase transition.
� Since a lattice formulation of the full SM is missing we consider

separately two sectors of the SM:
� The Higgs-Yukawa sector consisting of the Higgs field and all the

fermions.
� The Gauge-Higgs sector consisting of the SU(2) gauge fields and the

Higgs field.
� We consider the simplest operator |φ|6, which is suppressed by two

powers of the scale of new physics MBSM, as a proxy for
UV-completion.
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1) The Higgs-Yukawa model

� Poor man’s version of the Standard Model which nonetheless
captures the nonperturbative chiral Higgs-top interaction.

� The Higgs and Yukawa parts of the Lagrangian are given by:

LH = |∂µφ|2 + m2
0 |φ|2 + λ4 |φ|4 + λ6M−2

BSM |φ|
6

Ltb = Ψt /∂Ψt + ybΨt ,LφbR + ytΨt ,Lφ̃tR + h.c. φ̃ = iτ2φ
†

where Ψt = (t ,b)ᵀ = (tL, tR,bL,bR)ᵀ and Ψt ,L = (tL,bL)ᵀ.
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Extended Mean Field Theory (EMFT)
OA, P. de Forcrand, P. Werner and A. Georges Phys. Rev. D 88 125006 (2013) [arXiv:1305.7136]

OA, P. de Forcrand, P. Werner and A. Georges Phys. Rev. D 90, 065008 (2014) [arXiv:1405.6613]

� We solve the model approximately by using an extended version of
Mean Field Theory which takes also quadratic fluctuations into
account.

� The original 4d problem reduces to a 0d problem with some
self-consistency conditions which can be solved at a very low
computational cost.

� EMFT can be formulated in any finite or infinite box which gives
access to finite volume and finite temperature effects.

� EMFT yields an implicit action where expectation value and
propagation (self-energy) need to be solved for self-consistently.
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Bench-marking the EMFT approximation

� EMFT has already proved to be very accurate on φ4 models.
� To check that the fermions are treated correctly we compare to full

Monte Carlo simulations of the Higgs-Yukawa model [1].
� The results are very encouraging (see next slide).
� Due to the large scale separation MBSM � v and the Goldstone

bosons, Monte Carlo simulations suffer from prohibitive finite size
effects. With EMFT, infinite volume is available at no extra cost.

� Moreover, the Monte Carlo simulation suffers from a “sign problem”
unless the fermions are mass-degenerate whereas EMFT can handle
the physical case.

[1] P. Hegde, K. Jansen, C. -J. D. Lin and A. Nagy PoS LATT13 [arXiv:1310.6260]
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λ6 = 0.1, “perturbative”
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λ6 = 1, “non-perturbative”
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Because of massless Goldstone bosons, the finite volume corrections
are power like→ major problem for Monte Carlo simulations.
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Lowering the Higgs mass bound
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Finite temperature transition (no gauge fields)
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2) Gauge-Higgs

� Perturbatively, the coefficient of the φ3 term which enables a first
order transition gets important contributions from the gauge coupling.

� For simplicity the fermions are left out. Well justified in the light of the
previous results.

� Lattice action:

LGH = −
∑
µ

κµφ
†(x)Uµ(x)φ(x + µ̂) + |φ(x)|2

+ λ
(
|φ(x)|2 − 1

)2
− 1

2

∑
µ>ν

βµReTrPµν(x).

Anisotropy: κi = κ/γκ, κ4 = κγκ, βi = β/γβ, β4 = βγβ.
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Anisotropy

� In order to keep the number of spatial lattice sites small at high
temperatures we used an anisotropic action.

� At tree level γκ = γβ = ξ ≡ as/at > 1 but they get renormalized by
quantum effects and have to be tuned.
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Perturbation theory

� As a cross check we compare
the measured anisotropies to
one loop perturbation theory.

� We find very good agreement
as well as a typo in the
literature [1].
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[1] F. Csikor, Z. Fodor, and J. Heitger Phys. Rev. D 58 094504 (1998)
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Locating the critical endpoint

� Once the anisotropies have
been tuned we determine the
phase boundary in the
(κ, λ)-plane.

� Somewhere on this line, in the
direction of increasing λ, the
transition turns from first order
to crossover at a critical
endpoint, which we wish to
locate.
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Locating the critical endpoint

� At the critical endpoint the model is in the universality class of the 3d
Ising model.

� We measure the 4th Binder cumulant of 〈φ〉 along the critical line and
look for the λ where it equals the 3d Ising value B4,c = 1.604. At this
point we measure the T = 0 Higgs-W boson mass ratio RH,w.
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Locating the critical endpoint

� At the critical quartic coupling the distribution of the expectation value
of the Higgs field contains two almost merged peaks.
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[1] K. Rummukainen et al, Nucl. Phys. B 532 283-314 (1998)
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Adding the φ6 operator

� The φ6 operator is added by reweighing the configurations obtained at
λ6 = 0.

� Since the critical line κc(λ) moves as a function of λ6 ≡ Λ−2 we have
to reweigh in the three variables κ, λ and λ6 simultaneously.

� We can then anew locate the critical endpoint and measure the T = 0
mass ratio.
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Linear response

�

Finally, we obtain the derivative
of the mass ratio mH/mW with
respect to the mass scale Λ of
the φ6 operator.
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� We can then extrapolate to a mass ratio of 125/80 to obtain a rough
estimate of the scale of new physics needed to yield a first order
transition at mH = 125 GeV.

[1] C. Grojean, G. Servant, and J. D. Wells, Phys. Rev. D 71 036001 (2005)
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Conclusions

� Sizable deviations from 1-loop results, nonperturbative method
crucial.

� Higher dimension operators can stabilize the Higgs potential even at
negative quartic couplings.

� EMFT approximation accurately describes the nonperturbative
physics.

� In the Higgs-Yukawa model the φ6 operator is not enough to make the
finite temperature phase transition first order.

� In the Gauge-Higgs model, on the other hand, it strengthens the
transition and could make EW baryogenesis viable if the new physics
scale is 1− 2 TeV.
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Thank you for your attention!
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First order line in the (λ4,MBSM)-plane
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3rd order cumulant

� We use the thrird order cumulant to determine the critical κ.
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Extended Mean Field Theory (EMFT)

� We assume small fluctuations around the vacuum expectation value
(vev).

Φx = (ĥx , ĝ1,x , ĝ2,x , ĝ3,x )ᵀ+(v̂ ,0,0,0)ᵀ ≡ δΦᵀ
x +〈Φ〉ᵀ ,

� The hopping term can be expressed as:

∆S = −2κ
∑
±µ

δΦᵀ
0δΦµ − 4dκv̂ ĥ0.
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� We can integrate out all fields except Φ0 at the cost of new couplings,
cpΦp

0, p ≥ 2.

� Truncating at second order is enough to capture most of the
dynamics, cf. mass renormalization.

� The effective action becomes:

SEMFT =Φᵀ
0(I4 −∆)Φ0 + λ̂

(
‖Φ0‖2 − 1

)2
− 2v̂(v̂ + ĥ)(2dκ−∆1)

+ TrLog (M (‖Φ0‖)) + VBSM (‖Φ0‖)

� Where ∆ = diag (∆1,∆2,∆2,∆2) emulates propagation in the
effective bath.
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Self-consistency equations

� We have introduced three unknowns in the action so we need three
self-consistency conditions:

1.
〈
Φᵀ

0

〉
= (v̂ ,0,0,0)ᵀ

2. 2
〈

ĥ2
0

〉
c

=

∫
d4p

(2π)4
1

1
2〈ĥ2

0〉c
+ ∆1 − 2κ

∑
µ cos(pµ)

3. 2
〈
ĝ2

i,0
〉

=

∫
d4p

(2π)4
1

1
2〈ĝ2

i,0〉 + ∆2 − 2κ
∑
µ cos(pµ)
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The fermion determinant

� In the EMFT approximation the fermions see the uniform field
‖Φ0‖ =

√
(v̂ + ĥ0)2 + ĝ2

1,0 + ĝ2
2,0 + ĝ2

3,0 ⇒ the fermion matrix is
diagonal in Fourier space.

� We can choose a basis for the determinant where the different flavors
decouple:

M (‖Φ0‖)ff ′ →
(
/∂ + yf

√
2κ‖Φ0‖

)
δff ′

� Fermions discretized using the Neuberger overlap operator which
respects chiral symmetry up to O(a2) corrections.
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� The fermion matrix becomes:

M(ov)
f = D(ov)+yf

√
2κ‖Φ‖

(
I4 −

1
2

D(ov)
)
.

� Since ‖Φ‖ is constant we can calculate the TrLog efficiently in Fourier
space:

TrLog
(

M(ov)
f

)
= 2
∫

d4p
(2π)4 log

∣∣∣∣ν(p) + yf
√

2κ‖Φ0‖
(

1− ν(p)

2

)∣∣∣∣2
ν(p) = 1 +

i
√

p̃2 + 1
2 p̂2 − 1√

p̃2 +
(1

2 p̂2 − 1
)2

p̃2 =
∑
µ

sin2(pµ), p̂2 = 4
∑
µ

sin2
(pµ

2

)
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