Perturbative renormalization

 of $\Delta S=2$ four-fermion operators with the chirally rotated Schrödinger functionāMauro Papinutto Mattia Dalla Brida Pol Vilaseca Mainar

Introduction

-Flavour physics play an important role in search of new physics, $\Delta \mathrm{F}=2$ transitions of particular relevance for constrains.
-Most general $\Delta \mathrm{F}=2$ weak effective Hamiltonian can be written in terms of

Parity even: $Q_{k}^{ \pm} \in\left\{Q_{V V+A A}^{ \pm}, Q_{V V-A A}^{ \pm}, Q_{S S-P P}^{ \pm}, Q_{S S+P P}^{ \pm}, Q_{T T}^{ \pm},\right\}$
Parity odd: $\mathcal{Q}_{k}^{ \pm} \in\left\{\mathcal{Q}_{V A+A V}^{ \pm}, \mathcal{Q}_{V A-A V}^{ \pm},-Q_{S P-P S}^{ \pm}, \mathcal{Q}_{S P+P S}^{ \pm}, \mathcal{Q}_{T \tilde{T}}^{ \pm},\right\}$
-Where, $O_{\Gamma_{X} \Gamma_{Y}}^{ \pm}=\frac{1}{2}\left[\left(\bar{\psi}_{1} \Gamma_{X} \psi_{2}\right)\left(\bar{\psi}_{3} \Gamma_{Y} \psi_{4}\right) \pm(2 \leftrightarrow 4)\right]$

Introduction

-Flavour physics play an important role in search of new physics, $\Delta \mathrm{F}=2$ transitions of particular relevance for constrains.
-Most general $\Delta \mathrm{F}=2$ weak effective Hamiltonian can be written in terms of

Parity even: $Q_{k}^{ \pm} \in\left\{Q_{V V+A A}^{ \pm}, Q_{V V-A A}^{ \pm}, Q_{S S-P P}^{ \pm}, Q_{S S+P P}^{ \pm}, Q_{T T}^{ \pm},\right\}$
Parity odd: $\mathcal{Q}_{k}^{ \pm} \in\left\{\underline{Q_{V A+A V}^{ \pm}}, \underline{2_{V A-A V}^{ \pm},-Q_{S P-P S}^{ \pm}, Q_{S P+P S}^{ \pm}, \phi_{T \tilde{T}}^{ \pm}}\right\}$
-Where, $O_{\Gamma_{X} \Gamma_{Y}}^{ \pm}=\frac{1}{2}\left[\left(\bar{\psi}_{1} \Gamma_{X} \psi_{2}\right)\left(\bar{\psi}_{3} \Gamma_{Y} \psi_{4}\right) \pm(2 \leftrightarrow 4)\right]$

SM

BSM $>$

Introduction

-For regularizations which preserve chiral symmetry, the operator mixing pattern is
PE: $Q_{1}^{ \pm}, Q_{2}^{ \pm}, Q_{3}^{ \pm}, Q_{4}^{ \pm}, Q_{5}^{ \pm} \quad \mathrm{PO}: \mathcal{Q}_{1}^{ \pm} \mathcal{Q}_{2}^{ \pm}, \mathcal{Q}_{3}^{ \pm} \mathcal{Q}_{4}^{ \pm}, \mathcal{Q}_{5}^{ \pm}$

Introduction

-For regularizations which break chiral symmetry, the operator mixing pattern is
PE: $Q_{1}^{ \pm}, Q_{2}^{ \pm}, Q_{3}^{ \pm}, Q_{4}^{ \pm}, Q_{5}^{ \pm} \quad \mathrm{PO}: \mathcal{Q}_{1}^{ \pm} \mathcal{Q}_{2}^{ \pm}, \mathcal{Q}_{3}^{ \pm} \mathcal{Q}_{4}^{ \pm}, \mathcal{Q}_{5}^{ \pm}$

Introduction

-For regularizations which break chiral symmetry, the operator mixing pattern is
PE: $Q_{1}^{ \pm}, Q_{2}^{ \pm}, Q_{3}^{ \pm}, Q_{4}^{ \pm}, Q_{5}^{ \pm} \quad \mathrm{PO}: \mathcal{Q}_{1}^{ \pm} \mathcal{Q}_{2}^{ \pm}, \mathcal{Q}_{3}^{ \pm} \mathcal{Q}_{4}^{ \pm}, \mathcal{Q}_{5}^{ \pm}$
-In practice, the PE operators can be studied through - tmQCD at maximal twist

- Ward Identities relating correlators of PE to PO

In both cases, one only needs PO renormalization.

Introduction

-For regularizations which break chiral symmetry, the operator mixing pattern is
$P E: Q_{1}^{ \pm}, Q_{2}^{ \pm}, Q_{3}^{ \pm}, Q_{4}^{ \pm}, Q_{5}^{ \pm}$
[Domini, Geménez, Martinelli, Talevi, Vladikas. '99]
$\mathrm{PO}: Q_{1}^{ \pm} Q_{2}^{ \pm}, Q_{3}^{ \pm} Q_{4}^{ \pm}, Q_{5}^{ \pm}$
-In practice, the PE operators can be studied through - tmQCD at maximal twist

- Ward Identities relating correlators of PE to PO

In both cases, one only needs PO renormalization.

- Scale evolution has been studied in the SF

$$
\mathcal{Q}_{1}^{ \pm} \begin{gathered}
\text { [Palombi, Pena, Sint, '06] } \\
\text { [Guagnelli et al., '06] }
\end{gathered} \mathcal{Q}_{2}^{ \pm}, \mathcal{Q}_{3}^{ \pm}, \mathcal{Q}_{4}^{ \pm}, \mathcal{Q}_{5}^{ \pm} \text {[Papinutto, Pena, Preti, '14] }
$$

Introduction

-Here we want to renormalize the PO operators using the χ SF.

$$
\left(\begin{array}{c}
\mathcal{Q}_{1} \\
\mathcal{Q}_{2} \\
\mathcal{Q}_{3} \\
\mathcal{Q}_{4} \\
\mathcal{Q}_{5}
\end{array}\right)_{\mathrm{R}}=\left(\begin{array}{ccccc}
\mathcal{Z}_{11} & 0 & 0 & 0 & 0 \\
0 & \mathcal{Z}_{22} & \mathcal{Z}_{23} & 0 & 0 \\
0 & \mathcal{Z}_{32} & \mathcal{Z}_{33} & 0 & 0 \\
0 & 0 & 0 & \mathcal{Z}_{44} & \mathcal{Z}_{45} \\
0 & 0 & 0 & \mathcal{Z}_{54} & \mathcal{Z}_{55}
\end{array}\right)\left(\begin{array}{l}
\mathcal{Q}_{1} \\
\mathcal{Q}_{2} \\
\mathcal{Q}_{3} \\
\mathcal{Q}_{4} \\
\mathcal{Q}_{5}
\end{array}\right)
$$

-The plan is:

- Automatic O(a) improvement:

No need for operator improvement.

- Simpler correlation functions:

3 point instead of 4 point.

- Build schemes where LO and NLO evolution is closer.

Few words on the χ SF

- Obtained through a chiral rotation of the fields in the SF

$$
\begin{array}{lll}
\psi \longrightarrow R(\alpha) \psi & R(\alpha)=e^{i \gamma_{5} \tau^{3} \alpha / 2} & \alpha=\pi / 2 \\
\bar{\psi} \longrightarrow \bar{\psi} R(\alpha) &
\end{array}
$$

* SF boundary conditions

$$
\begin{array}{ll}
\left.\widetilde{Q}_{+} \psi\right|_{x_{0}=0}=\widetilde{Q}-\left.\psi\right|_{x_{0}=T}=0 & \widetilde{Q}_{ \pm}=\frac{1}{2}\left(1 \pm i \gamma_{0} \gamma_{5} \tau_{3}\right) \\
\left.\bar{\psi} \widetilde{Q}_{+}\right|_{x_{0}=0}=\left.\bar{\psi} \widetilde{Q}_{-}\right|_{x_{0}=T}=0 &
\end{array}
$$

Few words on the χ SF

-Obtained through a chiral rotation of the fields in the SF

$$
\begin{array}{lll}
\psi \longrightarrow R(\alpha) \psi & R(\alpha)=e^{i \gamma_{5} \tau^{3} \alpha / 2} & \alpha=\pi / 2 \\
\bar{\psi} \longrightarrow \bar{\psi} R(\alpha) &
\end{array}
$$

- SF boundary conditions

$$
\begin{array}{ll}
\widetilde{Q}+\left.\psi\right|_{x_{0}=0}=\left.\widetilde{Q}_{-} \psi\right|_{x_{0}=T}=0 & \widetilde{Q}_{ \pm}=\frac{1}{2}\left(1 \pm i \gamma_{0} \gamma_{5} \tau_{3}\right) \\
\left.\bar{\psi} \widetilde{Q}_{+}\right|_{x_{0}=0}=\left.\bar{\psi} \widetilde{Q}_{-}\right|_{x_{0}=T}=0 &
\end{array}
$$

-Implements in the SF the mechanism of auto O(a) improvement in terms of \mathcal{P}_{5}

$$
O_{\text {even }} \longrightarrow O(1), O\left(a^{2}\right), \ldots
$$

$$
O_{\text {odd }} \longrightarrow O(a), O\left(a^{3}\right), \ldots
$$

$$
P_{5}:\left\{\begin{array}{l}
\psi(x) \rightarrow i \gamma_{0} \gamma_{5} \tau^{3} \psi(\tilde{x}) \\
\bar{\psi}(x) \rightarrow-\bar{\psi}(\tilde{x}) i \gamma_{0} \gamma_{5} \tau^{3} \\
\tilde{x}=\left(x_{0},-\mathbf{x}\right)
\end{array}\right.
$$

Few words on the χ SF

-After renormalisation and $\mathrm{O}(\mathrm{a})$ improvement of the boundaries. \mathcal{P}_{5} even observables are free from $\mathrm{O}(\mathrm{a})$ effects.

$$
\longrightarrow m_{\mathrm{c}} \quad z_{\mathrm{f}} \quad \longrightarrow d_{\mathrm{s}} \quad c_{\mathrm{t}}
$$

- Studied in PT [sint, Vlaseca '12-14], quenched [González López et al. '13]

-Implements in the SF the mechanism of auto O(a) improvement in terms of \mathcal{P}_{5}

$$
\begin{aligned}
& O_{\text {even }} \longrightarrow O(1), O\left(a^{2}\right), \ldots \\
& O_{\text {odd }} \longrightarrow O(a), O\left(a^{3}\right), \ldots
\end{aligned}
$$

$$
P_{5}:\left\{\begin{array}{l}
\psi(x) \rightarrow i \gamma_{0} \gamma_{5} \tau^{3} \psi(\tilde{x}) \\
\bar{\psi}(x) \rightarrow-\bar{\psi}(\tilde{x}) i \gamma_{0} \gamma_{5} \tau^{3} \\
\tilde{x}=\left(x_{0},-\mathbf{x}\right)
\end{array}\right.
$$

4-f correlation functions

-We start wih the matrix elements of the parity-even operators in the standard SF.
-In general, there are 2 types of correlations:
Type A:
Type B:

$F_{A}\left(x_{0}\right)=\left\langle O_{5}^{\prime 21} Q^{1234} O_{5}^{43}\right\rangle$
$K_{A}\left(x_{0}\right)=\frac{1}{3} \sum_{k}\left\langle O_{k}^{\prime 21} Q^{1234} O_{k}^{43}\right\rangle$
-Boundary operators:

$$
O_{5}^{12}=\sum_{\mathbf{y}, \mathbf{z}} \bar{\zeta}_{1}(\mathbf{y}) \gamma_{5} P_{-} \zeta_{2}(\mathbf{z}) \quad O_{k}^{12}=\sum_{\mathbf{y}, \mathbf{z}} \bar{\zeta}_{1}(\mathbf{y}) \gamma_{k} P_{-} \zeta_{2}(\mathbf{z})
$$

4-f correlation functions

- Next, we perform the chiral rotation to the $\chi \mathrm{SF}$. -We consider the flavour assignments: (not unique)

$$
f_{1}=s^{-}, \quad f_{2}=d, \quad f_{3}=s^{+}, \quad f_{4}=d^{\prime} .
$$

The rotation
Rotates like an up-type quark

$$
\psi \longrightarrow R(\pi / 2) \psi \quad \bar{\psi} \longrightarrow \bar{\psi} R(\pi / 2) \quad R(\alpha)=e^{i \gamma_{5} \tau^{3} \alpha / 2}
$$

Maps parity-even to parity odd:

$$
\begin{aligned}
& Q_{1}^{ \pm} \longrightarrow-i \mathcal{Q}_{1}^{ \pm, s^{-} d s^{+} d^{\prime}} \\
& Q_{2}^{ \pm} \longrightarrow-i \mathcal{Q}_{2}^{\mp, s^{-} d s^{+} d^{\prime}} \\
& Q_{3}^{ \pm} \longrightarrow-i \mathcal{Q}_{3}^{\mp, s^{-} d s^{+} d^{\prime}} \\
& Q_{4}^{ \pm} \longrightarrow-i \mathcal{Q}_{4}^{ \pm, s^{-} d s^{+} d^{\prime}} \\
& Q_{5}^{ \pm} \longrightarrow-i \mathcal{Q}_{5}^{ \pm, s^{-} d s^{+} d^{\prime}}
\end{aligned}
$$

4-f correlation functions

-Correlation functions in the $\chi \mathrm{SF}$:

$$
\begin{aligned}
& F_{i}\left(x_{0}\right) \longrightarrow G_{i}\left(x_{0}\right)=\left\langle\mathcal{O}_{5}^{\prime} d s^{-} \mathcal{Q}_{i}^{s^{-} d s^{+} d^{\prime}} \mathcal{O}_{5}^{d^{\prime} s^{+}}\right\rangle \\
& K_{i}\left(x_{0}\right) \longrightarrow L_{i}\left(x_{0}\right)=\frac{1}{3} \sum_{k}\left\langle\mathcal{O}_{k}^{\prime d s^{-}} \mathcal{Q}_{i}^{s^{-} d s^{+} d^{\prime}} \mathcal{O}_{k}^{d^{\prime} s^{+}}\right\rangle
\end{aligned}
$$

4-f correlation functions

-Correlation functions in the $\chi \mathrm{SF}$:

$$
\begin{aligned}
& F_{i}\left(x_{0}\right) \longrightarrow G_{i}\left(x_{0}\right)=\left\langle\mathcal{O}_{5}^{\prime d s^{-}} \mathcal{Q}_{i}^{s^{-} d s^{+} d^{\prime}} \mathcal{O}_{5}^{d^{\prime} s^{+}}\right\rangle \\
& K_{i}\left(x_{0}\right) \longrightarrow L_{i}\left(x_{0}\right)=\frac{1}{3} \sum_{k}\left\langle\mathcal{O}_{k}^{\prime} d s^{-} \mathcal{Q}_{i}^{s^{-} d s^{+} d^{\prime}} \mathcal{O}_{k}^{d^{\prime} s^{+}}\right\rangle
\end{aligned}
$$

4-f correlation functions

-Correlation functions in the $\chi \mathrm{SF}$:

$$
\begin{aligned}
& F_{i}\left(x_{0}\right) \longrightarrow G_{i}\left(x_{0}\right)=\left\langle\mathcal{O}_{5}^{\prime} d s^{-} \mathcal{Q}_{i}^{s^{-} d s^{+} d^{\prime}} \mathcal{O}_{5}^{d^{\prime} s^{+}}\right\rangle \\
& K_{i}\left(x_{0}\right) \longrightarrow L_{i}\left(x_{0}\right)=\frac{1}{3} \sum_{k}\left\langle\mathcal{O}_{k}^{\prime d s^{-}} \mathcal{Q}_{i}^{s^{-} d s^{+} d^{\prime}} \mathcal{O}_{k}^{d^{\prime} s^{+}}\right\rangle
\end{aligned}
$$

4-f correlation functions

-Correlation functions in the $\chi \mathrm{SF}$:

$$
\begin{aligned}
& F_{i}\left(x_{0}\right) \longrightarrow G_{i}\left(x_{0}\right)=\left\langle\mathcal{O}_{5}^{\prime d s^{-}} \mathcal{Q}_{i}^{s^{-} d s^{+} d^{\prime}} \mathcal{O}_{5}^{d^{\prime} s^{+}}\right\rangle \\
& K_{i}\left(x_{0}\right) \longrightarrow L_{i}\left(x_{0}\right)=\frac{1}{3} \sum_{k}\left\langle\mathcal{O}_{k}^{\prime d s^{-}} \mathcal{Q}_{i}^{s^{-} d s^{+} d^{\prime}} \mathcal{O}_{k}^{d^{\prime} s^{+}}\right\rangle
\end{aligned}
$$

-Renormalized as:

$$
\begin{aligned}
{\left[G_{i}\right]_{R} } & =Z_{i} Z_{\zeta}^{4} G_{i} \\
{\left[L_{i}\right]_{R} } & =Z_{i} Z_{\zeta}^{4} L_{i}
\end{aligned}
$$

-Boundary field renormalization can be removed with:

$$
\begin{array}{ll}
{\left[g_{1}\right]_{R}=Z_{\zeta}^{4} g_{1}} & {\left[g_{\widetilde{V}}\right]_{R}=Z_{\zeta}^{2} g_{\widetilde{V}}} \\
{\left[l_{1}\right]_{R}=Z_{\zeta}^{4} l_{1}} & {\left[l_{\widetilde{V}}\right]_{R}=Z_{\zeta}^{2} l_{\widetilde{V}}}
\end{array}
$$

Renormalization conditions

-For imposing renormalization conditions, we consider matrix elements of the form

$$
\begin{gathered}
\mathcal{G}_{i}=\frac{G_{i}}{\mathcal{N}(\alpha, \beta, \gamma)} \quad \mathcal{L}_{i}=\frac{L_{i}}{\mathcal{N}(\alpha, \beta, \gamma)} \quad \alpha+\beta+\gamma<1 \\
\mathcal{N}(\alpha, \beta, \gamma)=\left[\frac{g_{1}}{g_{1}^{(0)}}\right]^{\alpha}\left[\frac{l_{1}}{l_{1}^{(0)}}\right]^{\beta}\left[\frac{g_{\widetilde{V}}}{g_{\widetilde{V}}^{(0)}}\right]^{2 \gamma}\left[\frac{l_{\widetilde{V}}}{l_{\widetilde{V}}^{(0)}}\right]^{2(1-\alpha-\beta-\gamma)}
\end{gathered}
$$

Renormalization conditions

-For imposing renormalization conditions, we consider matrix elements of the form

$$
\begin{gathered}
\mathcal{G}_{i}=\frac{G_{i}}{\mathcal{N}(\alpha, \beta, \gamma)} \quad \mathcal{L}_{i}=\frac{L_{i}}{\mathcal{N}(\alpha, \beta, \gamma)} \quad \alpha+\beta+\gamma<1 \\
\mathcal{N}(\alpha, \beta, \gamma)=\left[\frac{g_{1}}{g_{1}^{(0)}}\right]^{\alpha}\left[\frac{l_{1}}{l_{1}^{(0)}}\right]^{\beta}\left[\frac{g_{\widetilde{V}}}{g_{\widetilde{V}}^{(0)}}\right]^{2 \gamma}\left[\frac{l_{\widetilde{V}}}{l_{\widetilde{V}}^{(0)}}\right]^{2(1-\alpha-\beta-\gamma)}
\end{gathered}
$$

-We impose renormalization conditions:
\cdot Operator $\mathcal{Q}_{1}^{ \pm} \quad \cdot$ Operators $\mathcal{Q}_{2}^{ \pm}, \mathcal{Q}_{3}^{ \pm}, \mathcal{Q}_{4}^{ \pm}, \mathcal{Q}_{5}^{ \pm}$

$$
\begin{array}{ll}
Z_{1} \mathcal{G}_{1=} \mathcal{G}_{1}^{(0)} & Z \mathcal{A}=\mathcal{A}^{(0)} \\
Z_{1} \mathcal{L}_{1=} \mathcal{L}_{1}^{(0)} & Z=\left(\begin{array}{ll}
\mathcal{Z}_{22} & \mathcal{Z}_{23} \\
\mathcal{Z}_{32} & \mathcal{Z}_{33}
\end{array}\right) \quad \mathcal{A}=\left(\begin{array}{ll}
\mathcal{G}_{2} & \mathcal{L}_{2} \\
\mathcal{G}_{3} & \mathcal{L}_{3}
\end{array}\right)
\end{array}
$$

For a given scheme: fix all parameters !!!

Choosing a scheme

- A criteria to choose a renormalization scheme is to demand LO and NLO evolution to be as close as possible

Choosing a scheme

-A criteria to choose a renormalization scheme is to demand LO and NLO evolution to be as close as possible

- In perturbation theory, renormalization conditions read

$$
\begin{array}{ll}
\mathcal{A}=\mathcal{A}^{(0)}+g_{0}^{2} \mathcal{A}^{(1)}+O\left(g_{0}^{4}\right) \quad Z^{(1)}=-\mathcal{A}^{(1)}\left[\mathcal{A}^{(0)}\right]^{-1} \\
Z=Z^{(0)}+g_{0}^{2} Z^{(1)}+O\left(g_{0}^{4}\right)
\end{array}
$$

Choosing a scheme

-The NLO anomalous dimensions can be obtained matching to a reference scheme

$$
\begin{gathered}
\gamma_{1}^{\chi S F}=\gamma_{1}^{\mathrm{ref}}+\left[\chi_{\chi S F, \mathrm{ref}}^{(1)}, \gamma_{0}\right]+2 \beta_{0} \chi_{\chi S F}^{(1)}+\beta_{0}^{\lambda} \lambda \frac{\partial}{\partial \lambda} \chi_{\chi S F, \mathrm{ref}}^{(1)}-\gamma_{0} \chi_{g}^{(1)} \\
\bar{g}_{\chi S F}^{2}=\chi_{g}\left(g_{\mathrm{ref}}\right) \bar{g}_{\mathrm{ref}}^{2} \\
O_{R}^{\chi S F}=\chi_{\chi S F, \mathrm{ref}}\left(g_{\mathrm{ref}}\right) O_{R}^{\mathrm{ref}}
\end{gathered}
$$

Choosing a scheme

-The NLO anomalous dimensions can be obtained matching to a reference scheme

$$
\begin{gathered}
\gamma_{1}^{\chi S F}=\gamma_{1}^{\mathrm{ref}}+\left[\chi_{\chi S F, \mathrm{ref},}^{(1)} \gamma_{0}\right]+2 \beta_{0} \chi_{\chi S F}^{(1)}+\beta_{0}^{\lambda} \lambda \frac{\partial}{\partial \lambda} \chi_{\chi S F, \mathrm{ref}}^{(1)}-\gamma_{0} \chi_{g}^{(1)} \\
\bar{g}_{\chi S F}^{2}=\chi_{g}\left(g_{\mathrm{ref}}\right) \bar{g}_{\mathrm{ref}}^{2} \quad O_{R}^{\chi S F}=\chi_{\chi S F, \mathrm{ref}}\left(g_{\mathrm{ref}}\right) O_{R}^{\mathrm{ref}}
\end{gathered}
$$

-RG-evolution formally obtained by [Papinutto, Pena, Preti, 'o6]
$U\left(\mu_{2}, \mu_{1}\right)=\mathrm{T} \exp \left\{\int_{\bar{g}\left(\mu_{1}\right)}^{\bar{g}\left(\mu_{2}\right)} \frac{\gamma(g)}{\beta(g)} d g\right\}$
$U\left(\mu_{2}, \mu_{1}\right)=\left[W\left(\mu_{2}\right)\right]^{-1} U\left(\mu_{2}, \mu_{1}\right)_{L O} W\left(\mu_{1}\right)$

Choosing a scheme

-The NLO anomalous dimensions can be obtained matching to a reference scheme

$$
\begin{gathered}
\gamma_{1}^{\chi S F}=\gamma_{1}^{\mathrm{ref}}+\left[\chi_{\chi S F, \mathrm{ref},}^{(1)} \gamma_{0}\right]+2 \beta_{0} \chi_{\chi S F}^{(1)}+\beta_{0}^{\lambda} \lambda \frac{\partial}{\partial \lambda} \chi_{\chi S F, \mathrm{ref}}^{(1)}-\gamma_{0} \chi_{g}^{(1)} \\
\bar{g}_{\chi S F}^{2}=\chi_{g}\left(g_{\mathrm{ref}}\right) \bar{g}_{\mathrm{ref}}^{2} \quad O_{R}^{\chi S F}=\chi_{\chi} S F, \mathrm{ref}\left(g_{\mathrm{ref}}\right) O_{R}^{\mathrm{ref}}
\end{gathered}
$$

-RG-evolution formally obtained by [Papinutto, Pena, Preti, 'o6]
$U\left(\mu_{2}, \mu_{1}\right)=\mathrm{T} \exp \left\{\int_{\bar{g}\left(\mu_{1}\right)}^{\bar{g}\left(\mu_{2}\right)} \frac{\gamma(g)}{\beta(g)} d g\right\}$
$U\left(\mu_{2}, \mu_{1}\right)=\left[W\left(\mu_{2}\right)\right]^{-1} U\left(\mu_{2}, \mu_{1}\right)_{L O} W\left(\mu_{1}\right)$

$$
\begin{aligned}
W(\mu)=1+\bar{g}^{2}(\mu) \frac{J(\mu)}{v} & +O\left(\bar{g}^{4}\right) \\
& \\
& \\
& {\left[\frac{\gamma_{0}}{2 \beta_{0}}, J\right]=\frac{\beta_{1}}{2 \beta_{0}^{2}} \gamma_{0}-\frac{1}{2 \beta_{0}} \gamma_{1} }
\end{aligned}
$$

Choosing a scheme

-The NLO anomalous dimensions can be obtained matching to a reference scheme

$$
\begin{gathered}
\gamma_{1}^{\chi S F}=\gamma_{1}^{\mathrm{ref}}+\left[\chi_{\chi S F, \mathrm{ref}}^{(1)}, \gamma_{0}\right]+2 \beta_{0} \chi_{\chi S F}^{(1)}+\beta_{0}^{\lambda} \lambda \frac{\partial}{\partial \lambda} \chi_{\chi S F, \mathrm{ref}}^{(1)}-\gamma_{0} \chi_{g}^{(1)} \\
\bar{g}_{\chi S F}^{2}=\chi_{g}\left(g_{\mathrm{ref}}\right) \bar{g}_{\mathrm{ref}}^{2} \quad O_{R}^{\chi S F}=\chi_{\chi S} F F, \mathrm{ref}\left(g_{\mathrm{ref}}\right) O_{R}^{\mathrm{ref}}
\end{gathered}
$$

-RG-evolution formally obtained by [Papinutto, Pena, Preti, '06]
$U\left(\mu_{2}, \mu_{1}\right)=\mathrm{T} \exp \left\{\int_{\bar{g}\left(\mu_{1}\right)}^{\bar{g}\left(\mu_{2}\right)} \frac{\gamma(g)}{\beta(g)} d g\right\}$
$U\left(\mu_{2}, \mu_{1}\right)=\left[W\left(\mu_{2}\right)\right]^{-1} U\left(\mu_{2}, \mu_{1}\right)_{L O} W\left(\mu_{1}\right)$

$$
W(\mu)=1+\bar{g}^{2}(\mu) J(\mu)+O\left(\bar{g}^{4}\right)
$$

Choose (α, β, γ) such that the norm of J is small

Results

- For $\mathcal{Q}_{1}^{ \pm}$, we find schemes for which $\mathrm{J}=0$:

$$
\begin{aligned}
& Z_{1} \mathcal{L}_{1}^{+}=\mathcal{L}_{1}^{+,(0)} \longrightarrow \alpha=\beta=0.16378, \quad \gamma=0 \\
& Z_{1} \mathcal{L}_{1}^{-}=\mathcal{L}_{1}^{-,(0)} \longrightarrow \alpha=\beta=0, \quad \gamma=0.42828
\end{aligned}
$$

-Convergence to the asymptotic value:

Results

- For $\mathcal{Q}_{2}^{ \pm}, \mathcal{Q}_{3}^{ \pm}, \mathcal{Q}_{4}^{ \pm}, \mathcal{Q}_{5}^{ \pm}$, we are scanning parameters, looking for appealing choices and discarding ugly schemes

$$
\begin{aligned}
& \text { i.e.: } \\
& \left.\begin{array}{ll}
\left(\mathcal{G}_{4}^{+}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)\right. & \mathcal{L}_{4}^{+}\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \\
\mathcal{G}_{5}^{+}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) & \mathcal{L}_{5}^{+}\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)
\end{array}\right)_{\theta=0.5}
\end{aligned} \begin{aligned}
& \left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=(0.014,0.264,0.657) \\
& \left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)=(0.95,0.05,0)
\end{aligned}
$$

-Running in this scheme:

Conclusions

- We have prepared the χ SF for the study of 4-quark ops.
- We wanted:
- Automatic O(a) improvement
- Simpler correlation functions
- Schemes with small NLO anomalous dimensions
-The overall strategy seems to work. We want to study further the different possibilities for building schemes.
- Non-perturbative study ready to go (see Dalla Brida's talk)

Oh well, that was the story !!!

Thank you very much !!!

