Aspects of topological actions on the lattice

Philippe de Forcrand ETH Zürich & CERN

with Oscar Åkerlund (ETH Zürich)

LAT15, Kobe, July 16, 2015

arXiv:1505.02666 \rightarrow JHEP

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

"Topological" action

• Invariant under smooth deformation of the field

Example: O(N) spin model, $S = \sum_{\langle i,j \rangle} R_{\theta}(\vec{\sigma}_i \cdot \vec{\sigma}_j)$ $R_{\theta}(x) = 0$ if $x > \cos \theta$, else $+\infty$ i.e. "flat" action with constraint

- Interesting because:
- no classical continuum limit
- nevertheless, as constraint becomes tighter, fluctuations are reduced:

 $\vec{\sigma}_i \cdot \vec{\sigma}_j
ightarrow 1 \ \Rightarrow \ \xi/a
ightarrow \infty$

- empirically, continuum limit ok, and *improved scaling*
- constraint tight enough \Rightarrow no "dislocations"

i.e. topology freezes, topological sectors well defined O(2) spin system: angle $(\vec{\sigma}_i, \vec{\sigma}_j) < \frac{\pi}{2} \Rightarrow$ No vortices!

• So far spin models: W. Bietenholz et al, 1009.2146; 1212.0579 Here, 4*d* compact *U*(1) gauge theory

"Topological" action for U(1) LGT

$$e^{-S} = \begin{cases} 1 & \operatorname{ReTr} U_P > \cos \delta_{max} & \forall P \\ 0 & \operatorname{else} \end{cases}$$

- Gauge-invariant: no constraint on link angles
- Monopoles (DeGrand-Toussaint): flux 2π through 3d cube: cannot exist if $\delta_{max} < \pi/3$

cf. Lüscher's admissibility condition: $TrU_P > 0.97$ for $SU(2) \rightarrow$ topological sectors [Schwinger model (constraint but not flat action): hep-lat/0305004]

- Recall U(1) phase diagram (Wilson action):
 - Coulomb phase at weak coupling
 - confining phase with monopole condensation at strong coupling

Wilson action: first-order PT at $\beta_c \approx 1$ Here, transition at $\delta_{max} = \frac{\pi}{3}$?

Monte Carlo with topological action

• Careful with Metropolis update:

allowed link-angle region may not be connected \rightarrow non-ergodicity

• Single-link update changes 2 plaquettes in a cube \to requires $\delta_{\max} \geq \frac{\pi}{2}$ to create monopole

• Double-link update needed to create/destroy monopoles down to $\delta_{max} = \frac{\pi}{3}$

Renormalized coupling via helicity modulus

• Introduce external magnetic flux ϕ with $\cos(\theta_P) \rightarrow \cos(\theta_P + \phi), P \in \text{stack}$

$$h \equiv \left. \frac{\partial^2 f(\phi)}{\partial \phi^2} \right|_{\phi=0} \qquad \qquad h(L=\infty) = \begin{cases} 0 & \text{confined} \\ \neq 0 & \text{Coulomb} \end{cases}$$

• Wilson action: $h = \beta \left(\left\langle \cos \theta_P \right\rangle - \beta \left\langle \left(\sum_{\text{stack}} \sin \theta_P \right)^2 \right\rangle \right)$ hep-lat/0311006

• Topological action: make ϕ dynamical \rightarrow distribution $p(\phi) = \exp(-f(\phi))$ 1212.0579

> Extract *h* as before, or better, fit $\beta_R \equiv \frac{1}{e_R^2}$ to classical ansatz $f(\phi) = -\log \sum_k e^{-\frac{\beta_R}{2}(\phi - 2\pi k)^2}$

Is the top. action transition really first-order?

- Large 24⁴ lattice: no doubt
 - Monte Carlo metastability of monopole density
 - clear two-peak distribution
 - Creutz ratios consistent with area resp. Coulomb law in resp. phases

Why does transition occur when $\delta_{max} > \frac{\pi}{3}$?

- Transition triggered by monopole condensation
- Need non-zero monopole density to "avalanche" and condense

New question: what happens as $\delta_{max} \searrow \frac{\pi}{3}$?

Monopole density in Coulomb phase

• Not too far from the first-order transition (*left plot*):

- Wilson: $n_{
 m monop} \sim \exp(-c\beta_R)$, because *classical* monopole mass $\sim 1/e_R^2$
- Top. action: also $\sim \exp(-c\beta_R)$!!; heavier monop. (\rightarrow improved action)
- As δ_{max} approaches $\frac{\pi}{3}$ (*right plot*):
 - n_{monop} vanishes with power law behaviour
 - $n_{\rm monop} \sim (\delta_{max} \frac{\pi}{3})^{11.7}$?? See later.

Is there another phase transition when $\delta_{max} = \frac{\pi}{3}$?

Phase transition at topological freezing point?

- Monopole density is identically zero for $\delta_{max} < \frac{\pi}{3}$, then non-zero \implies non-analytic
- Consider an extended action, also topological: S = S_t+λn_{monop}, where S_t is our top. action, and λ ≥ 0 suppresses monopoles (1212.0579)

Then
$$\langle n_{\text{monop}} \rangle = - \left. \frac{d \log Z}{d \lambda} \right|_{\lambda=0} \rightarrow \text{free energy is singular}$$

• In practice: vanishingly small monopole density \rightarrow hard to study/detect

• Same argument for vortices in spin system, or topological sectors in Yang-Mills

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Critical exponent for defect density

• Similar behaviour for monopoles in 4d U(1) and for vortices in 2d XY:

- n_{monop} vanishes following a power law at $\delta_{\text{max}} = \frac{\pi}{3} (U(1))$ or $\frac{\pi}{2} (XY)$
- Crude estimate of critical exponent:
 - XY: vortex-antivortex pair on 2 neighb. plaquettes \rightarrow phase space $(\delta \frac{\pi}{2})^{2\times 3}$ U(1): monop.-antimonop. in 4 cubes sharing a plaquette $\rightarrow (\delta \frac{\pi}{3})^{4\times 5}$

Both times, neglect constraint on shared link/plaquette \rightarrow overestimate exponent

Bonus: free energy for free!

 $Z(\delta_{max}) \equiv e^{-\frac{f(\delta_{max})}{V}} = \text{number of configurations satisfying the constraint} \\ \text{Tr} U_P > \cos(\delta_{max}) \ \forall P$

 $Z(\delta_2)/Z(\delta_1) =$ proportion of configurations of $Z(\delta_1)$ still belonging to $Z(\delta_2)$ \Downarrow

> Generate a Monte Carlo sample for $Z(\delta_1)$ and *count* the fraction of survivors versus δ — possible also with complex action —

Continuum limit (not rigorous)

• Tighter constraint \rightarrow smeared $\delta(U_P - 1) \Rightarrow \frac{\xi}{a} \rightarrow \infty$, i.e. continuum limit

Under "favorable conditions", continuum limit is Yang-Mills math-ph/0305058

Idea here: flat distribution unimportant becomes Gaussian-like for block variables anyway, by central limit theorem

• Example: 1d XY unit spin chain, $angle(s_i, s_{i+1}) \equiv \theta_i \in [-\delta_{max}, +\delta_{max}]$

$$Z = \int_{-\delta_{\max}}^{\delta_{\max}} \prod_{i=1}^{N} \frac{\mathrm{d}\theta_i}{2\delta_{\max}} \delta\left(\exp\left(i\Theta\right) - 1\right), \quad \Theta \equiv \sum_{i=1}^{N} \theta_i = 2\pi m, \ m \text{ winding nb.}$$

 $\theta_i \text{ uniform in } \left[-\delta_{max}, +\delta_{max}\right] \text{ (variance } \frac{\delta_{max}^2}{3}) \to \Theta \approx \text{Gaussian, variance } N \frac{\delta_{max}^2}{3}$ $Z \propto \int d\Theta \exp\left(-\frac{\Theta^2}{2N \frac{\delta_{max}^2}{3}}\right) = \sum_m \exp\left(-\frac{3}{2\alpha^2}m^2\right), \quad \alpha^2 = \frac{N \delta_{max}^2}{4\pi^2}$

Top. susceptibility: $\chi_t = \frac{\langle m^2 \rangle}{Na} \underset{Na \to \infty}{=} \frac{1}{4\pi^2 I}$, I moment of inertia of quantum rotor

Conclusions

- Topological action: intriguing, valid choice
- \bullet Constraint removes large field configurations \rightarrow better scaling
- \bullet Free energy for free \rightarrow density of states approach to sign pb?
- Together with topological sectors, new possibilities for θ -term ? cf. U.-J. Wiese's 2d O(3) at $\theta = \pi$ & 1204.4913

Thank you for your attention

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <