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Introduction

In pure gauge theory there is rich spectrum of glueball states.
From Morningstar and Peardon (hep-lat/9901004). Can we find
evidence for glueball degrees of freedom in nature?
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Unquenched lattice QCD calculations which include glueball
degrees of freedom are hard because

Glueball correlators have a poor signal to noise ratio, hence
high statistics are required or better techniques.
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Introduction to glueballs

Glueballs are bound states of glue.

The holy grail of hadron spectroscopy is to find experimental
evidence for glueballs.

Unfortunately in the real world, glueballs will probably mix
with quark-antiquark states with the same quantum numbers.

Also in unquenched QCD the glueball will decay with the
strong force, hence resonance effects need to be considered.

Note that pure Yang-Mills theory (QCD with no quarks) is a
consistent quantum field theory, but because it doesn’t describe
reality, it is not easy to compute the lattice spacing.
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Unquenched glueball calculation

The ASQTAD improved staggered fermion action with the
one loop tadpole improved gauge action was used. (Same as
MILC collaboration)

The strange quark mass was not very well tuned. The
parameters were chosen to be part of a larger (but with lower
statistics) set of calculations performed by the MILC
collaboration (arXiv:0903.3598 for an overview).

First paper (arXiv:1005.2473), the high statistics allowed us to
us to see a signal for the pseudo-scalar 0−+ glueball.

Second paper (1208.1858) used a bigger basis of glue based
operators including bi-torelon operator and two body glueball
states (using code developed in 1007.3879).

a fm mπ MeV L fm Number of configs

0.12 280 2.9 5000
0.09 360 2.9 3000
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Summary plot (1208.1858)

A comparison of lattice results with PDG and results from Crystal
Barrel collaboration.
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η η
′ Glueball mixing

The lightest glueballs in quenched QCD are the 0++

(1710(80) MeV), 2++ (2390(120) MeV), and 0+− (2560(120)
MeV).

The dynamics of 0++ states is complicated, so might be
better to look at η-η′-Glueball mixing.

For example the KLOE experiment (hep-ex/0612029) wrote the
physical η′ meson state in terms of light and strange quark states
and glueball degrees of freedom.

| η′〉 = Xη′ | qq〉+ Yη′ | ss〉+ Zη′ | glueball〉

Fit Xη′ , Yη′ , and Zη′ to experimental branching fractions.

There are different parameterizations, but KLOE used one
with X 2

η′
+ Y 2

η′
= 1

KLOE claimed Z 2
η′
= 0.14 ± 0.04
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η η
′ Glueball mixing

It is not clear how to write down a mixing angle between
fermionic operator and glueball operator with 0−+.

Many different mixing schemes proposed. For example:
Kentucky-Taiwan, arXiv:0811.2577.

It is possible to include quark and glueball degrees of freedom
in the same variational calculation.

Some (η − η
′ - G) mixing schemes suggest large unquenching

effects in the mass of the 0−+ glueball degrees of freedom.

Look at the glueball operators on the same configurations from
ETMC (nf = 2 + 1 + 1 sea quarks) (arXiv:1310.1207) used to
compute the η and η

′ mass.

ETMC found mη = 551(8)(6) MeV, mη′ =
1006(54)(38)(+61) MeV and mixing angle 46(1)(3).
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Very preliminary results using 0−+ glueball

Two nf = 2 + 1 + 1 twisted mass ensembles, from ETMC, run
through glueball code:

1 iwasaki b2.10 L32T64 k0.156315 mu0.0045 musigma0.0937
mudelta0.1077, 1100 configs. 1/a ∼ 3.2 GeV. (analysis in
progress).

2 iwasaki b1.95 L32T64 k0.161236 mu0.0055 musigma0.135
mudelta0.17, 2200 configs, from ETMC, 1/a ∼ 2.5 GeV.
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Open boundary conditions

The basis of our numerical lattice QCD calculations is the
Monte Carlo process.

It is important that the sample size is large enough.

Different observables require a different number of Monte
Carlo samples (long autocorrelation times).

People worry the most about the topology of the gauge fields.

It is not clear that the gauge field topology is important for
the masses, but is important to check.

The topological charge Q is defined by

Q =
1

32π2

∫
F a

µν
F̃ a

µν
d4x .

in terms of the Euclidean color gauge field F a
µν

and its dual F̃ a
µν
,
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Open boundary conditions

Consider a lattice with dimensions T × L× L× L

Normally we use periodic boundary conditions in space and
anti-periodic conditions in time for the quark fields.

Lüscher and Schaefer (CERN) proposed the use of open boundary
conditions to “solve” the problem with topology ( JHEP 1107
(2011) 036).

F0k(x) |x0=0= F0k(x) |x0=T= 0

for all k=1,2,3
There are more complicated boundary conditions for the quark
fields.
First use of open boundary conditions for glueballs,
arXiv:1402.7138, Chowdhury et al. Pure SU(3) simulations with
Wilson gauge action.
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Continuum limit (1402.7138, Chowdhury et al.)

A problem with open boundary conditions is that you can’t use
correlators close to time boundaries. (O1 open BC and P1 periodic
BC).
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Continuum limit

From arXiv:1402.7138, compare results from Chowdhury et al.
with results from other groups. Use r0 ∼ 0.48 fm for quenched
QCD. Higher statistics required for a definitive test.
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Why think about statistics and noise?

Calculations which include glueball degrees of freedom require
large statistics

Gregory et al. (arXiv:0709.4224, arXiv:1112.4384 ) found tails
of distributions were important for signal and error of η and η

′.

Progress in molecules, nuclear type lattice calculations is
limited by noise in the correlators. (Endres, 1112.4023).

But note however,

In lattice QCD spectroscopy calculations we measure some
correlators and then average to get the central value.

The law of large numbers protects us from needing to know
about the detailed form of the probability distribution.

Histogram the correlators at specific timeslices and fit a Guassian
and use Kolmogorov-Smirnov test for normality.
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In an ideal world

From paper by Kaplan et al. 1112.4023
Some lattice data for unitary fermions (not QCD).
Moments based analysis technique (estimator has reduced
errors, but biased)

DeGrand (rXiv:1204.4664) looked at his BSM data and found
much evidence for lognormal behavior, but moments method of
Kaplan et al. didn’t work.
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164 quenched a ≈ 0.1fm Wilson 0++

3 basis states and t = 1,2,4 (glueball correlators)

0++ glueball corr (peroidic BC in time), oper1_block1_time1 

c(t)

D
en

si
ty

29500 30000 30500

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0++ glueball corr (peroidic BC in time), oper1_block1_time2 

c(t)

D
en

si
ty

29200 29400 29600 29800 30000 30200 30400

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0++ glueball corr (peroidic BC in time), oper1_block1_time4 

c(t)

D
en

si
ty

29400 29600 29800 30000 30200 30400

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0++ glueball corr (peroidic BC in time), oper1_block2_time1 

c(t)

D
en

si
ty

38000 39000 40000 41000 42000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

6e
−

04

0++ glueball corr (peroidic BC in time), oper1_block2_time2 

c(t)

D
en

si
ty

38000 39000 40000 41000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

0++ glueball corr (peroidic BC in time), oper1_block2_time4 

c(t)

D
en

si
ty

38500 39000 39500 40000 40500 41000 41500

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04
1e

−
03

0++ glueball corr (peroidic BC in time), oper1_block3_time1 

c(t)

D
en

si
ty

24000 26000 28000 30000 32000 34000 36000 38000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0++ glueball corr (peroidic BC in time), oper1_block3_time2 

c(t)

D
en

si
ty

26000 28000 30000 32000 34000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0++ glueball corr (peroidic BC in time), oper1_block3_time4 

c(t)

D
en

si
ty

24000 26000 28000 30000 32000 34000 36000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

Investigating some technical improvements to glueball calculations.



164 quenched a ≈ 0.1fm Wilson 0−+

3 basis states and t = 1,2,4 (Preliminary results with open
boundary conditions were less normal.) (glueball correlators)
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164 quenched a ≈ 0.1fm Wilson 2++

3 basis states and t = 1,2,4 (glueball correlators)

2++ glueball corr (peroidic BC in time), oper1_block1_time1 
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Unquenched iwasaki b1.95 L32T64 k0.161236 mu0.0055
musigma0.135 mudelta0.17 from ETMC 0−+

3 basis states and t = 1,2,4 (glueball correlators)
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Unquenched ASQTAD fermions 323 × 64, 0−+

3 basis states and t = 1,2,4 (glueball correlators)
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Unquenched ASQTAD fermionic loops 323 × 64, 0−+

1 basis states and t = 4 (qq correlators)

Eric Gregory worked on distributions in arXiv:0709.4224.
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Conclusions and Summary

Some insight into η
′ - glueball mixing may be possible, if we

can beat the signal to noise problem.

A clear picture has not emerged from looking at the noise in
glueball and disconnected correlators.

It is not clear that the statistical distribution of a glueball
correlator is physical.

More work is required to determine the effect of open
boundary conditions on the masses of glueballs.

Perhaps run on other available high statistics ensembles.

Thanks

Glueball correlators generated on clusters at Plymouth and
compute grids run by GridPP.
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