Understanding the problem with logarithmic singularities in the complex Langevin method

Shinji Shimasaki (KEK)

based on the work in collaboration with Jun Nishimura (KEK, SOKENDAI) Phys. Rev. D 92, 011501(R) (2015) (arXiv:1504.08359 [hep-lat])

Complex Langevin Method (CLM) [Parisi 83][Klauder 84]

- A promising method for evading the sign problem in the path integral with a complex weight
- $\cdot\,$ e.g.) finite density QCD, real time dynamics, $\cdots\,$
- sometimes works, sometimes fails
- recent progress : better understanding of the cause of the failure

Recent understanding

CLM fails when

- the probability distribution has large excursions
 into the imaginary direction [Aarts, Seiler, Stamatescu 09]
 [Aarts, James, Seiler, Stamatescu 09 11]
- the action involves "log" : $S = \log \Delta(\phi) + \cdots$
 - [Mollgaard, Splittorff 13][Greensite 14]
 - · CLM gives wrong results when the phase of $\Delta(\phi)$ rotates frequently during the Langevin process
 - why? ambiguity of log branch ? … not clear

Our understanding

[Nishimura-SS 15]

- $\cdot \,$ log branch is not the cause of the problem
- Rather, the singularity in the drift term causes the problem
- Indeed, the problem occurs even when the action involves non-logarithmic singularity

(ex)
$$S = \frac{\beta}{(x+i\alpha)^2} + \frac{x^2}{2}$$

gauge cooling is useful here as well (Nagata's talk)

[Nishimura-SS 15]

$$Z = \int_{-\infty}^{\infty} dx (x + i\alpha)^p e^{-x^2/2}$$
 ($\alpha \in \mathbf{R}$, $p \in \mathbf{R}$)

- action $S = -\log(x + i\alpha)^p + x^2/2$ "log" or "Log"
- drift term $-\frac{dS}{dx} = \frac{p}{x + i\alpha} x$
- Langevin eq. $x(t) \rightarrow z(t) = x(t) + iy(t)$

$$\frac{dz(t)}{dt} = \frac{p}{z(t) + i\alpha} - z(t) + \eta(t)$$

[Nishimura-SS 15]

$$Z = \int_{-\infty}^{\infty} dx (x + i\alpha)^p e^{-x^2/2}$$
 ($\alpha \in \mathbf{R}$, $p \in \mathbf{R}$)

- action $S = -\log(x + i\alpha)^p + x^2/2$ "log" or "Log"
- drift term $-\frac{dS}{dx} = \frac{p}{x + i\alpha} x$
- · Langevin eq. $x(t) \rightarrow z(t) = x(t) + iy(t)$

$$\frac{dz(t)}{dt} = \frac{p}{z(t) + i\alpha} - z(t) + \eta(t)$$

Defining the action is not necessary in formulating CLM

[Nishimura-SS 15]

$$Z = \int_{-\infty}^{\infty} dx \, w(x)$$

· drift term u

$$w(x)^{-1}\frac{dw(x)}{dx}$$

· Langevin eq. $x(t) \rightarrow z(t) = x(t) + iy(t)$

$$\frac{dz(t)}{dt} = w(z)^{-1}\frac{dw(z)}{dz} + \eta(t)$$

• The problem is whether the ensemble average can reproduce the path integral with the complex weight w(x)

[Nishimura-SS 15]

$$Z = \int_{-\infty}^{\infty} dx (x + i\alpha)^p e^{-x^2/2}$$
 ($\alpha \in \mathbf{R}$, $p \in \mathbf{R}$)

· Langevin eq.

$$\frac{dx(t)}{dt} = \operatorname{Re}\frac{p}{z(t) + i\alpha} - x(t) + \eta(t)$$
$$\frac{dy(t)}{dt} = \operatorname{Im}\frac{p}{z(t) + i\alpha} - y(t)$$

· compute the average of z^n in CLM

 $Z = \int_{-\infty}^{\infty} dx (x + i\alpha)^p e^{-x^2/2}$

p = 50

Result (p=50)

Result (p=50)

For CLM to work :

probability distribution associated with the Langevin process $\int dx dy \mathcal{O}(x+iy) P(x,y) = \int dx \mathcal{O}(x) e^{-S}$

 We can show this equality if partial integration on the complex plane is allowed

[Aarts, Seiler, Stamatescu 09][Aarts, James, Seiler, Stamatescu 09 11]

• For partial integration to be justified :

•

The distribution should have a fast fall-off

[Aarts, Seiler, Stamatescu 09][Aarts, James, Seiler, Stamatescu 09 11]

· For partial integration to be justified :

•

The distribution should have fast fall-off

[Aarts, Seiler, Stamatescu 09][Aarts, James, Seiler, Stamatescu 09 11]

· The drift term should not have singularities

[Nishimura-SS 15]

$$\int_{-\infty}^{\infty} dx \frac{1}{x} \frac{d}{dx} e^{-x^2} \neq \int_{-\infty}^{\infty} dx \frac{1}{x^2} e^{-x^2}$$

• For partial integration to be justified :

· The distribution should have fast fall-off

OK, since the drift term = $-z + \cdots$

· The drift term should not have singularities

The drift term is singular at $z = -i\alpha$ ($x = 0, y = -i\alpha$) ... OK, if the distribution is zero near the singularity.

Result (p=50)

Radial distribution

Non-logarithmic case

$$Z = \int_{-\infty}^{\infty} dx e^{-\frac{1}{(x+i\alpha)^2} - x^2/2}$$

• action
$$S(z) = \frac{1}{(z+i\alpha)^2} + z^2/2$$

no log finite for real x

$$\cdot \text{ drift} = \frac{2}{(z+i\alpha)^3} - z$$

singular at $z = -i\alpha$

Result (non-log)

non-Log, p=2, β =1 1 exact — CLM ⊢→ 0.5 ×> ₩ 0 $\overset{'}{\Theta} \overset{\Theta}{\Theta} \overset{O}{\Theta} \overset{O}{O} \overset{O}$ -0.5 -1 0.5 2 1.5 0 1 α non-Log, p=2, β =1 exact — CLM ⊢→ 4 $\Theta \Theta \Theta \Theta \Theta \Theta$ 2 🖡 $Re < x^2 >$ 0 -2 -4 0.5 1.5 2 0 1

α

Result (non-log)

Summary

- Condition for CLM to work
- = probability distribution has a fast fall-off and is practically zero near the singularity
- Both are related to the justification of the partial integration
- "gauge cooling" should be useful in curing the singularity problem, too !!
- The new insights have great impact on applications to finite density QCD at low T with light quarks. (Nagata's talk)