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Complex Langevin Method 
(CLM)

• A promising method for evading the sign 
problem in the path integral with a complex 
weight 

• e.g.) finite density QCD, real time dynamics,… 

• sometimes works, sometimes fails 

• recent progress : better understanding of the 
cause of the failure

[Parisi 83][Klauder 84]



Recent understanding
CLM fails when 

the probability distribution has large excursions 
into the imaginary direction 

the action involves “log” : 

• CLM gives wrong results when the phase of         
rotates frequently during the Langevin process 

• why? ambiguity of log branch ? … not clear

S = log�(�) + · · ·

�(�)

[Mollgaard, Splittorff 13][Greensite 14]

[Aarts, Seiler, Stamatescu 09] 
[Aarts, James, Seiler, Stamatescu 09 11]



Our understanding
• log branch is not the cause of the problem 

• Rather, the singularity in the drift term causes the 
problem 

• Indeed, the problem occurs even when the action 
involves non-logarithmic singularity 

•             (ex) 

           gauge cooling is useful here as well
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[Nishimura-SS 15]

(Nagata’s talk)



one variable case
•   

• action 

• drift term 

• Langevin eq. 
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one variable case
•   

• drift term  

• Langevin eq. 

• The problem is whether the ensemble average can 
reproduce the path integral with the complex 
weight 

x(t) ! z(t) = x(t) + iy(t)

Z =

Z 1

�1
dx w(x)

w(x)�1 dw(x)

dx

dz(t)

dt
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one variable case
•   

• Langevin eq. 

• compute the average of      in CLM

Z =

Z 1

�1
dx(x+ i↵)pe�x

2
/2 p 2 R↵ 2 R(             ,            )

dy(t)

dt
= Im

p

z(t) + i↵
� y(t)

dx(t)

dt

= Re
p

z(t) + i↵

� x(t) + ⌘(t)

[Nishimura-SS 15]

zn



Z =

Z 1

�1
dx(x+ i↵)pe�x

2
/2

p=50



Result (p=50)
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Why does CLM fail?
• For CLM to work : 

• We can show this equality if partial integration 
on the complex plane is allowed

[Aarts, Seiler, Stamatescu 09][Aarts, James, Seiler, Stamatescu 09 11]

Z
dxdyO(x+ iy)P (x, y) =

Z
dxO(x)e�S

probability distribution associated  
with the Langevin process complex weight



Why does CLM fail?
• For partial integration to be justified : 

• The distribution should have a fast fall-off  

  

[Aarts, Seiler, Stamatescu 09][Aarts, James, Seiler, Stamatescu 09 11]



Why does CLM fail?
• For partial integration to be justified : 

• The distribution should have fast fall-off  

• The drift term should not have singularities 

[Aarts, Seiler, Stamatescu 09][Aarts, James, Seiler, Stamatescu 09 11]
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Why does CLM fail?
• For partial integration to be justified : 

• The distribution should have fast fall-off  

• The drift term should not have singularities 

�z

z = �i↵ (x = 0, y = �i↵)

OK, since the drift term =       + …

The drift term is singular at                                        
… OK, if the distribution is zero near the singularity.
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Radial distribution
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Non-logarithmic case

• action 

• drift ＝

Z =
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Result (non-log)
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Summary
• Condition for CLM to work 
= probability distribution has a fast fall-off  
   and  is practically zero near the singularity 

• Both are related to the justification of the partial integration 

• ”gauge cooling” should be useful in curing the singularity 
problem, too !! 

• The new insights have great impact on applications to finite 
density QCD at low T with light quarks.  (Nagata’s talk)




