Transverse and longitudinal spectral functions of charmonia at finite temperature with maximum entropy method

Atsuro Ikeda
Masayuki Asakawa, Masakiyo Kitazawa

Osaka University
Kobe, July 17, 2015

Motivation

Relativistic Heavy Ion Collisions

■ Dynamical property of QGP medium
■ Charmonium
■ $\boldsymbol{J} / \boldsymbol{\psi}$ suppression [Matsui \& Satz 1986]

- Color Debye screening Bound state melts at upper $\boldsymbol{T}_{\boldsymbol{c}}$

Dynamical property of chrmonium at finite temperature with lattice QCD

■ Charmonium at rest frame

- dissosiation
- transport coefficient

■ Charmonium at moving frame

- dispersion relation

■ decomposition into transverse and longitudinal components with vector channel

- dissosiation

Spectral function and Lattice

Correlator and Spectral function

$$
\begin{aligned}
D(\tau, \vec{k}) & =\int d^{3} x e^{i \vec{k} \cdot \vec{x}}\left\langle J_{i}(\tau, \vec{x}) J_{i}^{\dagger}(0, \overrightarrow{0})\right\rangle \\
& =\int_{0}^{\infty} K(\tau, \omega) A(\omega, \vec{k}) d \omega \\
K(\tau, \omega) & =\frac{e^{-\tau \omega}+e^{-(\beta-\tau) \omega}}{1-e^{-\beta \omega}}
\end{aligned}
$$

ill-posed problem

- Imaginary time correlator $\rightarrow O(\mathbf{1 0})$ data points
- Spectral function \rightarrow continuous

Inverse Laplace transform is difficult

Maximum Entropy Method

Reconstructed Image $\boldsymbol{A}_{\text {out }}$

$$
\begin{aligned}
A_{\text {out }} & =\int d \alpha \int[d A] A(\omega) P(A, \alpha) \\
P(A, \alpha) & =[\text { Likelihood function }](A) \times \alpha[\text { Prior probability }](A) / Z
\end{aligned}
$$

from Bayes Theorem

11 Likelihood function $\Longleftarrow \chi^{2}$

$$
■ \exp (-L)=\exp \left[-\frac{1}{2} \sum_{i, j}\left(D\left(\tau_{i}\right)-D_{A}\left(\tau_{i}\right)\right) C_{i j}^{-1}\left(D\left(\tau_{j}\right)-D_{A}\left(\tau_{j}\right)\right)\right]
$$

2 Prior probability \Longleftarrow Shannon-Jaynes entropy
$■ \exp (S)=\exp \left(\alpha \int_{0}^{\infty}\left[A(\omega)-\boldsymbol{m}(\omega)-A(\omega) \log \left(\frac{A(\omega)}{m(\omega)}\right)\right] d \omega\right)$

- default model $\boldsymbol{m}(\omega)$ dependence \rightarrow error analysis

Error estimate

■ Exprresion of MEM error

$$
\begin{aligned}
\left\langle A_{\mathrm{out}}\right\rangle_{I}= & \int d \alpha \int[d A] \int_{I} d \omega A(\omega) P(A, \alpha) \\
& / \int_{I} d \omega \\
\left\langle\left(\delta A_{\mathrm{out}}\right)^{2}\right\rangle_{I}= & \int_{\delta A(\omega)} d \alpha \int[d A] \int_{I \times I} d \omega d \omega^{\prime} \\
& / \int_{I \times I} d \omega d \omega^{\prime} \\
\delta A(\omega)= & A(\omega)-A_{\alpha}(\omega) \\
I= & {\left[\omega_{1}, \omega_{2}\right] }
\end{aligned}
$$

M.Asakawa and T.Hatsuda, PRL. 92, (2004).

Charmonium melt between $1.62 \boldsymbol{T}_{\boldsymbol{c}}$ and
${ }^{1.87 T_{c}}$

Vector channel: decomposition into transverse and longitudinal

Decomposition

$$
A^{\mu v}(\omega, \vec{k})=P_{L}^{\mu \nu} A_{L}(\omega, \vec{k})+P_{T}^{\mu \nu} A_{T}(\omega, \vec{k})
$$

- In vacuum

■ No rest frame
■ $A \propto g^{\mu \nu}-k^{\mu} k^{\nu} / k^{2}$

$$
\rightarrow A_{L}=A_{T}
$$

■ In medium
■ Rest frame ($\boldsymbol{u}^{\mu}=(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0})$) exists.

$$
\rightarrow \boldsymbol{A}_{L}, \boldsymbol{A}_{T} \text { can depend on } \boldsymbol{k}^{0}=\boldsymbol{u} \cdot \boldsymbol{k},|\overrightarrow{\boldsymbol{k}}|^{2}=\sqrt{(\boldsymbol{u} \cdot \boldsymbol{k})^{2}-\boldsymbol{k}^{2}}
$$

- Decomposition is work.
\square for $\boldsymbol{k}=(\omega, \boldsymbol{p}, \mathbf{0}, \mathbf{0})$
1 Transverse: $\boldsymbol{A}_{\boldsymbol{T}}(\omega, \boldsymbol{p})=\frac{\boldsymbol{A}_{2}(\omega, p)+A_{3}(\omega, p)}{2}$
2 Longitudinal: $A_{L}(\omega, p)=\frac{\omega^{2}-p^{2}}{\omega^{2}} A_{1}(\omega, p)$

Lattice setup

1 Gauge configuration
■ quenched QCD

- Anisotropic lattice:

$$
\begin{aligned}
& \quad a_{\tau}=9.75 \times 10^{-3}[\mathrm{fm}], \\
& a_{\sigma} / a_{\tau}=\mathbf{4 . 0} \\
& ■ \boldsymbol{\beta}=\mathbf{7 . 0} \\
& ■ \text { (Over relaxation } \times 4 \\
& \quad+\text { pseudo heatbath } \times \mathbf{5 0 0}
\end{aligned}
$$

2 Correlator measurement
■ Wilson Fermion (iroiro++)
■ $\kappa_{\sigma}=8.285 \times 10^{-2}$, $\gamma_{F}=\mathbf{3 . 4 7 6}$ [Asakawa, Hatsuda 2004]

- $\boldsymbol{p}=\mathbf{0} \sim 3.0[\mathrm{GeV}]$
- Average of 8 source positions
setup

$\boldsymbol{N}_{\boldsymbol{\tau}}$	$\boldsymbol{T} / \boldsymbol{T}_{\mathbf{c}}$	$\boldsymbol{N}_{\boldsymbol{\sigma}}$	$\boldsymbol{N}_{\text {conf }}$
40	1.87	64	500
46	1.62	64	500
50	1.49	64	500
96	0.78	64	500

performed on Blue Gene/Q @ KEK

Correlator: Vector channel

\square Normalized by $\boldsymbol{D}_{\boldsymbol{p}=\mathbf{0}}(\hat{\tau})$
■ Correlators decompose at finite momentum
■ $D_{V t}=\frac{D_{V 2}+D_{V 3}}{2}$

Spectral function with 0 momentum

Spectral function with 0 momentum

Spectral function with 0 momentum

Spectral function with 0 momentum

$■ J / \psi$ suvives up to $\boldsymbol{T}=\mathbf{1 . 6 2} \boldsymbol{T}_{\boldsymbol{c}}$

Spectral function with momentum

■ If a peak is exists at $\boldsymbol{p}=\mathbf{0}$, the peak remains at nonzero momenta.

Estimation of a peak position and its error

- Define the peak position by a center of weight of the peak
- Error can be estimated in MEM.
\square Check the dependence on the range $I=\left[\omega_{1}, \omega_{2}\right]$

Error estimate

$$
\begin{aligned}
& \text { (Center of weight) }=\frac{\left\langle\omega \frac{A(\omega)}{\omega^{2}}\right\rangle_{I}}{\left\langle\frac{A(\omega)}{\omega^{2}}\right\rangle_{I}} \\
& (\text { variance })=\frac{\sqrt{\left\langle\left\{\omega \delta\left(\frac{A(\omega)}{\omega^{2}}\right)\right\}^{2}\right\rangle_{I}}}{\left\langle\frac{A(\omega)}{\omega^{2}}\right\rangle_{I}}
\end{aligned}
$$

■ $\langle\boldsymbol{A}(\omega) / \omega\rangle_{I}$ relates to a residue of the peak

Dispersion relation

■ Consistent with the Lorentz-invariant dispersion relation

$$
\omega=\sqrt{\left.m\right|_{p=0} ^{2}+p^{2}}
$$

Residue of the bound state peaks

In vaccum,

$$
A(\omega)=Z \delta\left(\omega^{2}-m^{2}\right)=\frac{Z}{2 \omega} \delta(\omega-m),
$$

$Z^{\prime} \equiv \mathbf{Z} / \mathbf{2} \omega$ at zero temperature should be constant . We determined \mathbf{Z}^{\prime} in MEM by

$$
Z^{\prime} \sim\langle A(\omega) / 2 \omega\rangle_{I}
$$

Summary

■ We measure the current-current correlators with finite momenta at finite temperature which corresponds to J / ψ, and reconstruct the spectral functions.
■ The bound state suvives up to $\boldsymbol{T}=\mathbf{1 . 6 2} \boldsymbol{T}_{\boldsymbol{c}}$.
■ When the bound state exists, the bound state remains with high momentum.

- The residue of the bound states with finite momenta have same behavior above and below $\boldsymbol{T}_{\boldsymbol{c}}$, althogh the correlators decompose.
- The form of dispersion relations at finite temperature is same with vaccum.
- The medium effect on the momentum dependence is not observed in the present statistics.

