Transverse and longitudinal spectral functions of charmonia at finite temperature with maximum entropy method

Atsuro Ikeda Masayuki Asakawa, Masakiyo Kitazawa

Osaka University

Kobe, July 17, 2015

A.Ikeda (Osaka University)

Chamonium spectrals with MEM

Kobe, July 17, 2015 1 / 13

Motivation

Relativistic Heavy Ion Collisions

- Dynamical property of QGP medium
- Charmonium
 - J/ψ suppression [Matsui & Satz 1986]
 - Color Debye screening
 - Bound state melts at upper T_c

Dynamical property of chrmonium at finite temperature with lattice QCD

- Charmonium at rest frame
 - dissosiation
 - transport coefficient
- Charmonium at moving frame
 - dispersion relation
 - decomposition into transverse and longitudinal components with vector channel
 - dissosiation

A.Ikeda (Osaka University)

Spectral function and Lattice

Correlator and Spectral function

$$D(\tau, \vec{k}) = \int d^3x e^{i\vec{k}\cdot\vec{x}} \left\langle J_i(\tau, \vec{x}) J_i^{\dagger}(0, \vec{0}) \right\rangle$$
$$= \int_0^{\infty} K(\tau, \omega) A(\omega, \vec{k}) d\omega$$
$$K(\tau, \omega) = \frac{e^{-\tau\omega} + e^{-(\beta - \tau)\omega}}{1 - e^{-\beta\omega}}$$

 $D(\tau, \vec{p})$: Imaginary time Correlator Lattice QCD $J_i(\tau, \vec{x})$: $\bar{c}i\gamma_i c$ (i = 1, 2, 3) Vector current

 $A(\omega, \vec{k})$: Spectral function

ill-posed problem

- Imaginary time correlator $\rightarrow O(10)$ data points
- Spectral function → continuous

Inverse Laplace transform is difficult

Reconstructed Image Aout

$$A_{\text{out}} = \int d\alpha \int [dA] A(\omega) P(A, \alpha)$$

 $P(A, \alpha) = [Likelihood function](A) \times \alpha[Prior probability](A)/Z$

from Bayes Theorem

1 Likelihood function
$$\Leftarrow \chi^2$$

• $\exp(-L) = \exp\left[-\frac{1}{2}\sum_{i,j} (D(\tau_i) - D_A(\tau_i)) C_{ij}^{-1} (D(\tau_j) - D_A(\tau_j))\right]$

$$\exp(S) = \exp\left(\alpha \int_{0}^{\infty} \left[A(\omega) - m(\omega) - A(\omega) \log\left(\frac{A(\omega)}{m(\omega)}\right)\right] d\omega\right)$$

default model $m(\omega)$ dependence \rightarrow error analysis

・ 同 ト ・ ヨ ト ・ ヨ ト

Error estimate

• Expression of MEM error

$$\langle A_{\text{out}} \rangle_{I} = \int d\alpha \int [dA] \int_{I} d\omega A(\omega) P(A, \alpha) \\ / \int_{I} d\omega \\ \langle (\delta A_{\text{out}})^{2} \rangle_{I} = \int d\alpha \int [dA] \int_{I \times I} d\omega d\omega' \\ \delta A(\omega) \delta A(\omega') P(A, \alpha) d\omega d\omega' \\ / \int_{I \times I} d\omega d\omega'$$

M.Asakawa and T.Hatsuda, PRL. 92, (2004).

< 67 ►

Charmonium melt between $1.62T_c$ and

< 注) < 注)

 $1.87T_{c}$

$$\delta A(\omega) = A(\omega) - A_{\alpha}(\omega)$$
$$I = [\omega_1, \omega_2]$$

æ

Vector channel: decomposition into transverse and longitudinal

Decomposition

$$A^{\mu\nu}(\omega,\vec{k}) = P_L^{\mu\nu}A_L(\omega,\vec{k}) + P_T^{\mu\nu}A_T(\omega,\vec{k})$$

- In vacuum
 - No rest frame

$$A \propto g^{\mu\nu} - k^{\mu}k^{\nu}/k^2$$
$$\rightarrow A_L = A_T$$

In medium

■ Rest frame ($u^{\mu} = (1, 0, 0, 0)$) exists.

 $\rightarrow A_L, A_T$ can depend on $k^0 = u \cdot k, |\vec{k}|^2 = \sqrt{(u \cdot k)^2 - k^2}$

- Decomposition is work.
- for $k = (\omega, p, 0, 0)$

1 Transverse:
$$A_T(\omega, p) = \frac{A_2(\omega, p) + A_3(\omega, p)}{2}$$

2 Longitudinal: $A_L(\omega, p) = \frac{\omega^2 - p^2}{\omega^2} A_1(\omega, p)$

A.Ikeda (Osaka University)

3 1 4 3

Lattice setup

Gauge configuration

- quenched QCD
- Anisotropic lattice:
 - $a_{\tau} = 9.75 \times 10^{-3}$ [fm],
 - $a_{\sigma}/a_{\tau} = 4.0$
- $\beta = 7.0$
- (Over relaxation×4)
 - + pseudo heatbath)×500
- 2 Correlator measurement
 - Wilson Fermion (iroiro++)

•
$$\kappa_{\sigma} = 8.285 \times 10^{-2}$$
,

 $\gamma_F = 3.476$ [Asakawa, Hatsuda 2004]

Average of 8 source positions

setup			
$N_{ au}$	$T/T_{\rm c}$	N_{σ}	N _{conf}
40	1.87	64	500
46	1.62	64	500
50	1.49	64	500
96	0.78	64	500

performed on Blue Gene/Q @ KEK

医下颌 医下

Correlator: Vector channel

Normalized by $D_{p=0}(\hat{\tau})$

Correlators decompose at finite momentum $D_{V2} = D_{V2} + D_{V3}$

$$\square D_{Vt} = \frac{D_{V2} + D_V}{2}$$

★ ∃ ► < ∃ ►</p>

A 10

A.Ikeda (Osaka University)

Kobe, July 17, 2015 8 / 13

A.Ikeda (Osaka University)

Kobe, July 17, 2015 8 / 13

A.Ikeda (Osaka University)

Kobe, July 17, 2015 8 / 13

J/ ψ survives up to $T = 1.62T_c$

If a peak is exists at p = 0, the peak remains at nonzero momenta.

∃ → < ∃</p>

Estimation of a peak position and its error

- Define the peak position by a center of weight of the peak
- Error can be estimated in MEM.
- Check the dependence on the range $I = [\omega_1, \omega_2]$

$\triangleleft \langle A(\omega)/\omega \rangle_I$ relates to a residue of the peak

A.Ikeda (Osaka University)

Chamonium spectrals with MEM

Kobe, July 17, 2015 10 / 13

Dispersion relation

Consistent with the Lorentz-invariant dispersion relation

$$\omega = \sqrt{m}|_{p=0}^2 + p^2$$

A.Ikeda (Osaka University)

Chamonium spectrals with MEM

3 Kobe, July 17, 2015 11/13

∃ ▶

Residue of the bound state peaks

In vaccum,

$$A(\omega) = Z\delta(\omega^2 - m^2) = \frac{Z}{2\omega}\delta(\omega - m),$$

 $Z' \equiv Z/2\omega$ at zero temperature should be constant . We determined Z' in MEM by

 $Z'\sim \langle A(\omega)/2\omega\rangle_I$

A.Ikeda (Osaka University)

Chamonium spectrals with MEM

Kobe, July 17, 2015 12 / 13

3 🕨 🖌 3

э

Summary

- We measure the current-current correlators with finite momenta at finite temperature which corresponds to J/ψ , and reconstruct the spectral functions.
- The bound state survives up to $T = 1.62T_c$.
- When the bound state exists, the bound state remains with high momentum.
- The residue of the bound states with finite momenta have same behavior above and below T_c, although the correlators decompose.
- The form of dispersion relations at finite temperature is same with vaccum.
- The medium effect on the momentum dependence is not observed in the present statistics.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●