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Motivation

Relativistic Heavy Ion Collisions
Dynamical property of QGP medium
Charmonium

J/ψ suppression [Matsui & Satz 1986]

Color Debye screening
Bound state melts at upper Tc

Dynamical property of chrmonium at finite temperature with lattice
QCD

Charmonium at rest frame
dissosiation
transport coefficient

Charmonium at moving frame
dispersion relation
decomposition into transverse and longitudinal components with vector
channel
dissosiation
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Spectral function and Lattice

Correlator and Spectral function

D(τ, ~k) =
∫

d3xei~k·~x
〈

J i(τ, ~x)J†
i
(0, ~0)

〉
=

∫ ∞
0

K(τ, ω)A(ω, ~k)dω

K(τ, ω) =
e−τω + e−(β−τ)ω

1 − e−βω

D(τ, ~p) : Imaginary time
Correlator
Lattice QCD

J i(τ, ~x) : c̄iγic (i = 1, 2, 3)
Vector current

A(ω, ~k) : Spectral function

ill-posed problem
Imaginary time correlator→ O(10) data points

Spectral function→ continuous

Inverse Laplace transform is difficult
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Maximum Entropy Method

Reconstructed Image Aout

Aout =

∫
dα
∫

[dA] A(ω)P(A, α)

P(A, α) = [Likelihood function](A) × α[Prior probability](A)/Z

from Bayes Theorem

1 Likelihood function⇐= χ2

exp(−L) = exp
[
− 1

2
∑

i, j (D(τi) − DA(τi)) C−1
i j

(
D(τ j) − DA(τ j)

)]
2 Prior probability⇐= Shannon-Jaynes entropy

exp(S) = exp
(
α
∫ ∞

0

[
A(ω) − m(ω) − A(ω) log

( A(ω)
m(ω)

)]
dω
)

default model m(ω) dependence→ error analysis
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Error estimate

Exprresion of MEM error

〈Aout〉I =

∫
dα
∫

[dA]
∫

I
dωA(ω)P(A, α)

/

∫
I

dω

〈(δAout)2
〉I =

∫
dα
∫

[dA]
∫

I×I
dωdω′

δA(ω)δA(ω′)P(A, α)dωdω′

/

∫
I×I

dωdω′

δA(ω) =A(ω) − Aα(ω)
I =[ω1, ω2]

M.Asakawa and T.Hatsuda, PRL. 92, (2004).

Charmonium melt between 1.62Tc and

1.87Tc
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Vector channel: decomposition into transverse and longitudinal

Decomposition

Aµν(ω, ~k) = Pµν
L

AL(ω, ~k) + Pµν
T

AT(ω, ~k)

In vacuum
No rest frame
A ∝ gµν − kµkν/k2

→AL = AT

In medium
Rest frame (uµ = (1, 0, 0, 0)) exists.
→AL, AT can depend on k0 = u · k, |~k|2 =

√
(u · k)2 − k2

Decomposition is work.
for k = (ω, p, 0, 0)

1 Transverse: AT(ω, p) = A2(ω,p)+A3(ω,p)
2

2 Longitudinal: AL(ω, p) = ω2−p2

ω2 A1(ω, p)
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Lattice setup

1 Gauge configuration
quenched QCD
Anisotropic lattice:
aτ = 9.75 × 10−3[fm],
aσ/aτ = 4.0
β = 7.0
(Over relaxation×4
+ pseudo heatbath)×500

2 Correlator measurement
Wilson Fermion (iroiro++)
κσ = 8.285 × 10−2,
γF = 3.476 [Asakawa, Hatsuda 2004]

p = 0 ∼ 3.0[GeV]
Average of 8 source positions

setup

Nτ T/Tc Nσ Nconf
40 1.87 64 500
46 1.62 64 500
50 1.49 64 500
96 0.78 64 500

performed on Blue Gene/Q @ KEK
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Correlator: Vector channel
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Normalized by Dp=0(τ̂)
Correlators decompose at finite momentum

DVt =
DV2+DV3

2
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Spectral function with 0 momentum
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J/ψ suvives up to T = 1.62Tc

A.Ikeda (Osaka University) Chamonium spectrals with MEM Kobe, July 17, 2015 8 / 13



Spectral function with 0 momentum
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Spectral function with 0 momentum
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Spectral function with 0 momentum
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Spectral function with momentum
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If a peak is exists at p = 0, the peak remains at nonzero momenta.
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Estimation of a peak position and its error

Define the peak position by a center of weight of the peak
Error can be estimated in MEM.
Check the dependence on the range I = [ω1, ω2]

Error estimate
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Pseudo scalar,  1.62Tc , p=0[GeV]

(Center of weight) =
〈ω

A(ω)
ω2 〉I

〈
A(ω)
ω2 〉I

(variance) =

√
〈{ωδ( A(ω)

ω2 )}2〉I

〈
A(ω)
ω2 〉I

〈A(ω)/ω〉I relates to a residue of the peak
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Dispersion relation
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T: 0.78Tc
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L: 1.49Tc
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Consistent with the Lorentz-invariant dispersion relation

ω =
√

m|2
p=0
+ p2
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Residue of the bound state peaks

In vaccum,

A(ω) = Zδ(ω2
− m2) =

Z
2ω

δ(ω − m),

Z′ ≡ Z/2ω at zero temperature should be constant .
We determined Z′ in MEM by

Z′ ∼ 〈A(ω)/2ω〉I

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p[GeV]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Z
′ p
/
Z
′ p

=
0

Residue of the peak

T

T

T

L: 1.62Tc

L: 1.49Tc

L: 0.78Tc

A.Ikeda (Osaka University) Chamonium spectrals with MEM Kobe, July 17, 2015 12 / 13



Summary

We measure the current-current correlators with finite momenta at
finite temperature which corresponds to J/ψ, and reconstruct the
spectral functions.

The bound state suvives up to T = 1.62Tc.

When the bound state exists, the bound state remains with high
momentum.

The residue of the bound states with finite momenta have same
behavior above and below Tc, althogh the correlators decompose.

The form of dispersion relations at finite temperature is same with
vaccum.

The medium effect on the momentum dependence is not observed in
the present statistics.
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