Kaon semileptonic form factors as functions of the momentum transfer with $\mathrm{N}_{\mathrm{f}}=2+1+1$ Twisted Mass fermions

L. Riggio (ETM Collaboration)

Università di Roma Tre, INFN Roma Tre

N. Carrasco, P. Lami, V. Lubicz, L. Riggio, S. Simula

Motivation

Kaon semileptonic decay rate is regulated by the vector and scalar form factors f_{+}and f_{0} which are functions of the square momentum transfer

Semileptonic decay rate :

$$
\begin{aligned}
\Gamma_{K_{\ell 3}}= & \frac{G_{F}^{2} m_{K}^{5}}{192 \pi^{3}} C_{K}^{2} S_{\mathrm{EW}}\left(\left|V_{u s}\right| f_{+}^{K^{0} \pi^{-}}(0)\right)^{2} I_{K \ell} \\
& \times\left(1+\delta_{\mathrm{EM}}^{K \ell}+\delta_{\mathrm{SU}(2)}^{K \pi}\right)^{2},
\end{aligned}
$$

these form factors are measured with increasing precision by experiments.
Typical lattice calculations focus on the value of the form factors at $\mathrm{q}^{2}=0$, it is however interesting to compute these form factors on the lattice in all the physical q^{2} range and to compare them with experimental measurements

Outline

- Simulation Details

General strategy
Plateaux
Simultaneous fit of the q^{2}, m_{l} and a^{2} dependence
FSE

- Dispersive parametrization and comparison with experiments
- Results and CKM unitarity tests
- Summary and Conclusions

Simulation Details

Something on the action:

- Wilson Twisted Mass action at maximal twist with $\mathrm{Nf}=2+1+1$ sea quarks
- Osterwalder-Seiler valence quark action
- Iwasaki gluon action

Simulation Details

Details of the ensembles used in this $\mathrm{N}_{\mathrm{f}}=2+1+1$ analysis
The valence light quark mass is put equal to the sea quark mass

ensemble	β	V / a^{4}	$a \mu_{\text {sea }}=a \mu_{l}$	$a \mu_{\sigma}$	$a \mu_{\delta}$	$N_{c f g}$	$a \mu_{s}$	$a \mu_{c}$
$A 30.32$	1.90	$32^{3} \times 64$	0.0030	0.15	0.19	150	0.0145,	$0.1800,0.2200$,
$A 40.32$			0.0040			90	0.0185,	$0.2600,0.3000$,
$A 50.32$			0.0050			150	0.0225	$0.3600,0.4400$
$A 40.24$	1.90	$24^{3} \times 48$	0.0040	0.15	0.19	150		
$A 60.24$			0.0060			150		
$A 80.24$			0.0080			150		
$A 100.24$			0.0100			150		
$B 25.32$	1.95	$32^{3} \times 64$	0.0025	0.135	0.170	150	0.0141,	$0.1750,0.2140$,
$B 35.32$			0.0035			150	0.0180,	$0.2530,0.2920$,
$B 55.32$			0.0055			150	0.0219	$0.3510,0.4290$
$B 75.32$			0.0075			75		
$B 85.24$	1.95	$24^{3} \times 48$	0.0085	0.135	0.170	150		
$D 15.48$	2.10	$48^{3} \times 96$	0.0015	0.12	0.1385	60	0.0118,	$0.1470,0.1795$,
$D 20.48$			0.0020			90	0.0151,	$0.2120,0.2450$,
$D 30.48$			0.0030			90	0.0184	$0.2945,0.3595$

Three different values of the lattice spacing: $0.06 \mathrm{fm} \div 0.09 \mathrm{fm}$
Different volumes: $2 \mathrm{fm} \div 3 \mathrm{fm}$ Pion masses in range $210 \div 440 \mathrm{MeV}$ Momentum range up to 350 MeV

To inject momenta we used non-periodic boundary conditions

Range of the simulated pion masses

β	$L(f m)$	$M_{\pi}(\mathrm{MeV})$	$M_{\pi} L$
1.90	2.84	245.41	3.53
		282.13	4.06
		314.43	4.53
1.90	2.13	282.13	3.05
		343.68	3.71
		396.04	4.27
		442.99	4.78
1.95	2.61	238.67	3.16
		280.95	3.72
		350.12	4.64
		408.13	5.41
1.95	1.96	434.63	4.32
2.10	2.97	211.18	3.19
		242.80	3.66
		295.55	4.46

Lattice Spacings	
$\mathrm{a}(\beta=1.90)$	$0.0885(36) \mathrm{fm}$
$\mathrm{a}(\beta=1.95)$	$0.0815(30) \mathrm{fm}$
$\mathrm{a}(\beta=2.10)$	$0.0619(18) \mathrm{fm}$

β	V / a^{4}	θ
1.90	$32^{3} \times 64$	$\begin{array}{cc} 0.0, \quad \pm 0.400, \\ \pm 0.933, & \pm 1.733 \end{array}$
	$24^{3} \times 48$	$\begin{array}{cc} 0.0, & \pm 0.300, \\ \pm 0.700, & \pm 1.300 \end{array}$
1.95	$32^{3} \times 64$	$\begin{gathered} 0.0, \quad \pm 0.366, \\ \pm 0.854, \\ \pm 1.588 \end{gathered}$
	$24^{3} \times 48$	$\begin{gathered} 0.0, \quad \pm 0.275, \\ \pm 0.641, \\ \pm 1.191 \end{gathered}$
2.10	$48^{3} \times 96$	$\begin{gathered} 0.0, \quad \pm 0.424, \\ \pm 0.986, \\ \pm 1.832 \end{gathered}$

General strategy

Over-constrain the scalar and vector form factors using a ratio of 3-points correlation function and the scalar density and extract with a combined fit our best determination of f_{0} and f_{+}on each ensemble for different values of q^{2}

Perform a combined fit of the scalar and vector form factors f_{0} and f_{+}studying simultaneously the $\mathrm{q}^{2}, \mathrm{~m}_{\mathrm{l}}$ and a^{2} dependence using different assumptions
$\checkmark \quad \mathrm{SU}(2)$ inspired formula,
$\downarrow \quad \mathrm{z}$ expansion
$\checkmark \quad$ polar or polynomial behavior of f_{0} as a function of q^{2}
Once we obtain the form factors as a function of the square 4-momentum transfer, we compute f_{0} and f_{+}in a set of reference q^{2} values and fit them with a dispersive parametrization to compare our determination of Λ_{+}and $\log C$ with the experimental one

Extraction of the form factors

The two kaon semileptonic form factors f_{0} and f_{+}can be determined from the matrix element of the vector current

$$
\begin{array}{r}
\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle=\left(p_{\mu}+p_{\mu}^{\prime}\right) f_{+}\left(q^{2}\right)+\left(p_{\mu}-p_{\mu}^{\prime}\right) f_{-}\left(q^{2}\right) \\
f_{+}\left(q^{2}\right)=\frac{\left(E-E^{\prime}\right) V_{i}-\left(p_{i}-p_{i}^{\prime}\right) V_{0}}{2 E p_{i}^{\prime}-2 E^{\prime} p_{i}} \\
f_{-}\left(q^{2}\right)=\frac{\left(p_{i}+p_{i}^{\prime}\right) V_{0}-\left(E+E^{\prime}\right) V_{i}}{2 E p_{i}^{\prime}-2 E^{\prime} p_{i}} \\
f_{0}\left(q^{2}\right)=f_{+}\left(q^{2}\right)+\frac{q^{2}}{m_{K}^{2}-m_{\pi}^{2}} f_{-}\left(q^{2}\right)
\end{array}
$$

an alternative way to determine f_{0} is to use the scalar density

$$
\left\langle\pi\left(p^{\prime}\right)\right| S|K(p)\rangle=f_{0}\left(q^{2}\right) \frac{m_{s}-m_{l}}{M_{K}^{2}-M_{\pi}^{2}}
$$

therefore using both matrix elements we are over-constraining f_{0} and f_{+}and we get our determination of the form factors on each ensemble for different values of q^{2} from a combined fit
in practice we get these matrix elements fitting the time dependence of appropriate combinations of 3-points correlation functions

Plateaux

example of plateaux of V_{0} and V_{1} for all the selected kinematics

$$
\begin{aligned}
\beta & =1.90 \\
\left.\mu_{1}^{(s e a}\right) & =0.0050 \\
\mu_{\mathrm{s}} & =0.0145
\end{aligned}
$$

SU(2) ChPT

SU(2) ChPT

The first formula used to fit the q^{2}, m_{1} and a^{2} dependence of the vector and scalar form factor simultaneously is obtained ${ }^{(1)}$ expanding in x the $\mathrm{SU}(3) \mathrm{NLO}$ expressions found by G\&L ${ }^{(2)}$

$$
\begin{aligned}
& f_{+}(s)=F_{+}(s)\left\{1+C_{+}(s) x+\frac{M_{K}^{2}}{(4 \pi f)^{2}}\left[-\frac{3}{4} x \log x-x T_{1}^{+}(s)-T_{2}^{+}(s)\right]\right\} \\
& f_{0}(s)=F_{0}(s)\left\{1+C_{0}(s) x+\frac{M_{K}^{2}}{(4 \pi f)^{2}}\left[-\frac{3}{4} x \log x-x T_{1}^{0}(s)-T_{2}^{0}(s)\right]\right\} \\
& s=q^{2} / M_{K}^{2} \quad x=M_{\pi}^{2} / M_{K}^{2}
\end{aligned}
$$

(1) [Lubicz et al. arXiv:1012.3573]
(2) [Gasser Leutwyler NPB 1985]
we adopt a pole behavior for $\mathrm{F}_{+, 0}$ (which would only arise at higher order) and a polynomial behavior for $\mathrm{C}_{+, 0}$

$$
F_{+, 0}(s)=\frac{F\left(a^{2}, s\right)}{1-\frac{q^{2}}{M_{V, s}^{2}}} \quad C_{+, 0}(s)=C+C_{+, 0}^{(1)} s+C_{+, 0}^{(2)} s^{2}
$$

SU(2) ChPT

SU(2) ChPT

The first formula used to fit the q^{2}, m_{1} and a^{2} dependence of the vector and scalar form factor simultaneously is obtained ${ }^{(1)}$ expanding in x the $\mathrm{SU}(3) \mathrm{NLO}$ expressions found by G\&L ${ }^{(2)}$

$$
\begin{aligned}
& f_{+}(s)=F_{+}(s)\left\{1+C_{+}(s) x+\frac{M_{K}^{2}}{(4 \pi f)^{2}}\left[-\frac{3}{4} x \log x-x T_{1}^{+}(s)-T_{2}^{+}(s)\right]\right\} \\
& f_{0}(s)=F_{0}(s)\left\{1+C_{0}(s) x+\frac{M_{K}^{2}}{(4 \pi f)^{2}}\left[-\frac{3}{4} x \log x-x T_{1}^{0}(s)-T_{2}^{0}(s)\right]\right\} \\
& s=q^{2} / M_{K}^{2} \quad x=M_{\pi}^{2} / M_{K}^{2}
\end{aligned}
$$

(1) [Lubicz et al. arXiv:1012.3573]
(2) [Gasser Leutwyler NPB 1985]
we adopt a pole behavior for $\mathrm{F}_{+, 0}$ (which would only arise at higher order) and a polynomial behavior for $\mathrm{C}_{+, 0}$

$$
F_{+, 0}(s)=\frac{F\left(a^{2}, s\right)}{1-\frac{q^{2}}{M_{V, S}^{2}}} \quad \quad C_{+, 0}(s)=C+C_{+, 0}^{(1)} s+C_{+, 0}^{(2)} s^{2} \quad \begin{aligned}
& M_{V}=M_{P S}+\Delta_{P S, V} \\
& M_{S}=M_{P S}+\Delta_{P S, S} \\
& \text { MPS has been calculated on th }
\end{aligned}
$$

MPS has been calculated on the lattice $\Delta_{\mathrm{PS}, \mathrm{V}}$ and $\Delta_{\mathrm{PS}, \mathrm{S}}$ are taken from the PDG

SU(2) ChPT

SU(2) ChPT

The first formula used to fit the q^{2}, m_{1} and a^{2} dependence of the vector and scalar form factor simultaneously is obtained ${ }^{(1)}$ expanding in x the $\mathrm{SU}(3) \mathrm{NLO}$ expressions found by G\&L ${ }^{(2)}$

$$
\begin{aligned}
& f_{+}(s)=F_{+}(s)\left\{1+C_{+}(s) x+\frac{M_{K}^{2}}{(4 \pi f)^{2}}\left[-\frac{3}{4} x \log x-x T_{1}^{+}(s)-T_{2}^{+}(s)\right]\right\} \\
& f_{0}(s)=F_{0}(s)\left\{1+C_{0}(s) x+\frac{M_{K}^{2}}{(4 \pi f)^{2}}\left[-\frac{3}{4} x \log x-x T_{1}^{0}(s)-T_{2}^{0}(s)\right]\right\} \\
& s=q^{2} / M_{K}^{2} \quad x=M_{\pi}^{2} / M_{K}^{2}
\end{aligned}
$$

(1) [Lubicz et al. arXiv:1012.3573]
(2) [Gasser Leutwyler NPB 1985]

While for the vector form factor, a pole parameterization with the dominance of the $\mathrm{K}^{*}(892)(\mathrm{Mv} \sim 892 \mathrm{MeV})$ is in good agreement with the data, for the scalar form factor, such dominance is less clear

For this reason we also tried a global fit in which we remove the pole parametrization for f_{0} replacing it with a polynomial dependence in q^{2}

(modified) z-expansion

(modified) z-expansion

We also tried to fit the $\mathrm{q}^{2}, \mathrm{~m}_{1}$ and a^{2} dependence of the vector and scalar form factor simultaneously using the z-expansion ${ }^{(1)}$ in which however the parameters a and b depend on the light quark mass and on the lattice spacing squared

$$
f_{+}\left(q^{2}\right)=\frac{\begin{array}{l}
a_{0}\left(m_{l}, a^{2}\right)+a_{1}\left(m_{l}, a^{2}\right)\left[z+\frac{1}{2} z^{2}\right] \\
1-\frac{q^{2}}{M_{V}^{2}}
\end{array}}{\begin{array}{c}
\text { (1) Bourrely Caprini and Lellouch } \\
\text { [Phys.Rev.D79 (2009) 013008] }
\end{array}} \begin{array}{ll}
& z=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}} \\
f_{0}\left(q^{2}\right)=\frac{b_{0}\left(m_{l}, a^{2}\right)+b_{1}\left(m_{l}, a^{2}\right)\left[z+\frac{1}{2} z^{2}\right]}{q_{S}^{2}} & t_{+}=\left(M_{K}+M_{\pi}\right)^{2}
\end{array}
$$

where we adopt for the parameters a and b a polynomial dependence on the lattice spacing squared and on the light quark mass

FSE

An investigation of ensemble A40.24 and A40.32 which share the same pion mass at different volumes shows the presence of non negligible FSE in the slope of the form factors. This can be seen in the plot below for $\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)$

For this reason we decided to add a FSE correction term in the slope and to fit its magnitude from our data
following what was done in [R. Frezzotti et al. PRD 79(2009)] for FSE correction in the pion electromagnetic form factor we adopt the following phenemenological correction for the slope

$$
1+P M_{\pi}^{2} \frac{e^{-M_{\pi} L}}{\left(M_{\pi} L\right)^{\alpha_{e f f}}}
$$

where P is a free parameter determined during the global fit and $\alpha_{\text {eff }}$ is an effective fractional power
we tested different values of $\alpha_{\text {eff }}$ and decided that a good estimate of the systematic uncertainty associated to the FSE is given by the spread on the final results found with $\alpha_{\text {eff }}=0$ and $\alpha_{\text {eff }}=3 / 2$

Comparison between data and global fit on given ensembles

Examples of q^{2}-dependence for some ensembles obtained from the global fit using $\mathrm{SU}(2) \mathrm{ChPT}$ and assuming a pole behavior for f_{0}

Global fit

Two example of the form factors obtained with different global fit in the continuum limit and at the physical light and strange quark mass. In the plot is also shown the form factor at zero momentum transfer relevant for the extraction of $\left|\mathrm{V}_{\mathrm{us}}\right|$

SU(2) ChPT

(modified) z-expansion

Global fit

Two example of the form factors obtained with different global fit in the continuum limit and at the physical light and strange quark mass. In the plot is also shown the form factor at zero momentum transfer relevant for the extraction of $\left|V_{u s}\right|$

SU(2) ChPT

(modified) z-expansion

The results can be compared with a dispersive fit of experimental data reported in (1). The most relevant parameters of the dispersive parametrization of the form factors are Λ_{+}and $\log C$.
To get our own determination of Λ_{+}and $\log \mathrm{C}$ we compute, for each analysis, f_{0} and f_{+}in a set of reference q^{2} values in the physical region and fit them with a dispersive formula.

Dispersive parametrization

Dispersive parametrization of the form factors is written as follows

$$
f_{+, 0}\left(q^{2}\right)=f_{+}(0)\left(1+\lambda_{+, 0}^{\prime} \frac{q^{2}}{M_{\pi}^{2}}+\frac{1}{2} \lambda_{+, 0}^{\prime \prime}\left(\frac{q^{2}}{M_{\pi}^{2}}\right)^{2}+\frac{1}{6} \lambda_{+, 0}^{\prime \prime \prime}\left(\frac{q^{2}}{M_{\pi}^{2}}\right)^{3}\right)
$$

where the Taylor expansion parameters are related to each other by these equations

$$
\begin{aligned}
\lambda_{0}^{\prime} & =\frac{m_{\pi}^{2}}{\Delta_{K \pi}}[\ln C-G(0)], \\
\lambda_{0}^{\prime \prime} & =\left(\lambda_{0}^{\prime}\right)^{2}-2 \frac{m_{\pi}^{4}}{\Delta_{K \pi}} G^{\prime}(0), \\
\lambda_{0}^{\prime \prime \prime} & =\left(\lambda_{0}^{\prime}\right)^{3}-6 \frac{m_{\pi}^{4}}{\Delta_{K \pi}} G^{\prime}(0) \lambda_{0}^{\prime}-3 \frac{m_{\pi}^{6}}{\Delta_{K \pi}} G^{\prime \prime}(0)
\end{aligned}
$$

$$
\lambda_{+}^{\prime}=\Lambda_{+},
$$

$$
\lambda_{+}^{\prime \prime}=\left(\lambda_{+}^{\prime}\right)^{2}+2 m_{\pi}^{2} H^{\prime}(0)
$$

$$
\lambda_{+}^{\prime \prime \prime}=\left(\lambda_{+}^{\prime}\right)^{3}+6 m_{\pi}^{2} H^{\prime}(0) \lambda_{+}^{\prime}+3 m_{\pi}^{4} H^{\prime \prime}(0)
$$

(modified) z-expansion

P - and S -wave $(\mathrm{K} \pi)_{\mathrm{I}=1 / 2}$ elastic scattering can be used to set priors on G and H so that we are left with only three free parameters

Dispersive parametrization

Dispersive parametrization of the form factors is written as follows

$$
f_{+, 0}\left(q^{2}\right)=f_{+}(0)\left(1+\lambda_{+, 0}^{\prime} \frac{q^{2}}{M_{\pi}^{2}}+\frac{1}{2} \lambda_{+, 0}^{\prime \prime}\left(\frac{q^{2}}{M_{\pi}^{2}}\right)^{2}+\frac{1}{6} \lambda_{+, 0}^{\prime \prime \prime}\left(\frac{q^{2}}{M_{\pi}^{2}}\right)^{3}\right)
$$

where the Taylor expansion parameters are related to each other by these equations

$$
\begin{aligned}
\lambda_{0}^{\prime} & \left.=\frac{m_{\pi}^{2}}{\Delta_{K \pi}} \ln C-G(0)\right], \\
\lambda_{0}^{\prime \prime} & =\left(\lambda_{0}^{\prime}\right)^{2}-2 \frac{m_{\pi}^{4}}{\Delta_{K \pi}} G^{\prime}(0), \\
\lambda_{0}^{\prime \prime \prime} & =\left(\lambda_{0}^{\prime}\right)^{3}-6 \frac{m_{\pi}^{4}}{\Delta_{K \pi}} G^{\prime}(0) \lambda_{0}^{\prime}-3 \frac{m_{\pi}^{6}}{\Delta_{K \pi}} G^{\prime \prime}(0)
\end{aligned}
$$

$$
\lambda_{+}^{\prime}=\Lambda_{+},
$$

$$
\lambda_{+}^{\prime \prime}=\left(\lambda_{+}^{\prime}\right)^{2}+2 m_{\pi}^{2} H^{\prime}(0)
$$

$$
\lambda_{+}^{\prime \prime \prime}=\left(\lambda_{+}^{\prime}\right)^{3}+6 m_{\pi}^{2} H^{\prime}(0) \lambda_{+}^{\prime}+3 m_{\pi}^{4} H^{\prime \prime}(0)
$$

(modified) z-expansion

P- and S-wave $(\mathrm{K} \pi)_{\mathrm{I}=1 / 2}$ elastic scattering can be used to set priors on G and H so that we are left with only three free parameters

| |
| :--- | :--- | :--- |
| experimental results in |
| the $\operatorname{lnC}, ~$ |

results and systematics

Combining the results from all these analyses we get:

$$
\begin{aligned}
f_{+}(0) & =0.9684(66) \\
\log C & =0.1937(138) \\
\Lambda_{+} & =25.2(1.6) \times 10^{-3}
\end{aligned}
$$

in particular:

$$
\begin{aligned}
f_{+}(0) & =0.9684(59)_{\text {stat }+ \text { fit }}(29)_{\text {syst }} \\
\log C & =0.1937(113)_{\text {stattfit }}(90)_{\text {syst }} \\
\Lambda_{+} & =25.2(1.2)_{\text {stat+fit }}(1.1)_{\text {syst }} \times 10^{-3}
\end{aligned}
$$

stat+fit is referred to both the statistical uncertainties (including the total error on the light and strange quark mass determination) and the uncertainties due to the fitting procedure
syst takes into account: the chiral extrapolation, which have been evaluated comparing the different fit formulas; FSE which are relevant for the slope of the form factors, and discretization effect, which have been evaluated comparing with a fit performed after removing all the data at the coarsest lattice spacing.

comparison with other results

The results from our analysis:

$$
f_{+}(0)=0.9684(66)
$$

$$
\log C=0.1937(138)
$$

$$
\Lambda_{+}=25.2(1.6) \times 10^{-3}
$$

Recent lattice calculation:

$$
\begin{array}{ll}
f_{+}(0)=0.9704(33) & \mathrm{FNAL} / \mathrm{MILC} \quad\left(N_{f}=2+1+1\right) \\
f_{+}(0)=0.9685(38) & \mathrm{RBC} / \mathrm{UKQCD} \quad\left(N_{f}=2+1\right)
\end{array}
$$

Experimental combined fit:

$$
\begin{aligned}
\log C_{E X P} & =0.1985(70) \\
\Lambda_{+E X P} & =25.75(36) \times 10^{-3}
\end{aligned}
$$

$$
\left|V_{u s}\right|=0.2234(16)
$$

Testing the CKM unitarity

Testing the first row

$$
\left|V_{u}\right|^{2} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

$$
V_{C K M}=\left(\begin{array}{c}
\frac{V_{u d}}{} V_{u s} \\
\hline V_{u b} \\
V_{c d} V_{c s} \\
V_{t d} \\
V_{t b}
\end{array} V_{t b} V_{t b}\right)
$$

Experimental input ${ }^{(1)}$
$\mathrm{K}_{\ell 2} \quad\left|\frac{V_{u s}}{V_{u d}}\right| \frac{f_{K^{ \pm}}}{f_{\pi^{ \pm}}}=0.2758(5) \quad \frac{f_{K^{ \pm}}}{f_{\pi^{ \pm}}}=1.184(16)^{(2)}$
Ke3

$$
\left|V_{u s}\right| f_{+}(0)=0.2163(5) \quad f_{+}(0)=0.9684(66)
$$ determination of $\left|\mathrm{V}_{\mathrm{us}}\right|$

$$
\left|V_{u s}\right|=0.2271(33)
$$

$$
\left|V_{u s}\right|=0.2234(16)
$$

$$
\left|V_{u d}\right|=0.97425(22) \quad \text { from } \beta \text {-decay }{ }^{(3)}
$$

$K_{\ell 2}$

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1.0007(16)
$$

Ke3

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9991(8)
$$

(1) Eur.Phys.J. C69 (2010) 399-424
(2) PRD 91 (2015)(Carrasco et al.)
(3) Phys.Rev. C79 (2009) 055502

Conclusions

- We presented $\mathrm{N}_{\mathrm{f}}=2+1+1$ results for the semileptonic form factors $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$ and in particular their value at zero momentum transfer, $f_{+}(0)$, which allowed us to determine $\left|\mathrm{V}_{\text {us }}\right|$

$$
f_{+}(0)=0.9684(66) \quad\left|V_{u s}\right|=0.2234(16)
$$

- we quantify the q^{2}-dependence of the form factors in terms of $\log \mathrm{C}$ and Λ_{+}which are the parameters relevant to the comparison with the experimental results.

$$
\log C=0.1937(138) \quad \Lambda_{+}=25.2(1.6) \times 10^{-3}
$$

Future plans:

$\checkmark \quad$ we plan to include also a global fit of the form factors based on hard-pion ChPT

Backup

SU(2) ChPT

SU(2) ChPT

The first formula used to fit the $\mathrm{q}^{2}, \mathrm{~m}_{1}$ and a^{2} dependence of the vector and scalar form factor simultaneously is obtained ${ }^{(1)}$ expanding in x the $\mathrm{SU}(3) \mathrm{NLO}$ expressions found by G\&L ${ }^{(2)}$

$$
\left.\begin{array}{c}
f_{+}(s)=F_{+}(s)\left\{1+C_{+}(s) x+\frac{M_{K}^{2}}{(4 \pi f)^{2}}\left[-\frac{3}{4} x \log x-x T_{1}^{+}(s)-T_{2}^{+}(s)\right]\right\}
\end{array} \begin{array}{rl}
f_{0}(s)=F_{0}(s)\left\{1+C_{0}(s) x+\frac{M_{K}^{2}}{(4 \pi f)^{2}}\left[-\frac{3}{4} x \log x-x T_{1}^{0}(s)-T_{2}^{0}(s)\right]\right\} & \text { (1) [Lubicz et al. arXiv:1012.3573] [Gasser Leutwyler NPB 1985] }
\end{array}\right] \begin{gathered}
s=q^{2} / M_{K}^{2} \quad x=M_{\pi}^{2} / M_{K}^{2} \\
T_{1}^{+}(s)=[(1-s) \log (1-s)+s(1-s / 2)] 3(1+s) / 4 s^{2} \\
T_{2}^{+}(s)=[(1-s) \log (1-s)+s(1-s / 2)](1-s)^{2} / 4 s^{2} \\
T_{1}^{0}(s)=[\log (1-s)+s(1+s / 2)]\left(9+7 s^{2}\right) / 4 s^{2} \\
T_{2}^{0}(s)=[(1-s) \log (1-s)+s(1-s / 2)](1-s)(3+5 s) / 4 s^{2}
\end{gathered}
$$

Extraction of the form factors

Extracting the vector and scalar current matrix elements in practice

$$
\begin{gathered}
\frac{C_{\mu}^{K \pi}\left(t, \vec{p}, \vec{p}^{\prime}\right) C_{\mu}^{\pi K}\left(t, \vec{p}^{\prime}, \vec{p}\right)}{C_{\mu}^{\pi \pi}\left(t, \vec{p}^{\prime}, \vec{p}^{\prime}\right) \quad C_{\mu}^{K K}(t, \vec{p}, \vec{p})} \rightarrow \frac{\left(\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle\right)^{2}}{4 p_{\mu} p_{\mu}^{\prime}} \\
\frac{C_{S}^{K \pi}\left(t, \vec{p}, \vec{p}^{\prime}\right) C_{S}^{\pi K}\left(t, \vec{p}^{\prime}, \vec{p}\right)}{Z_{K} Z_{\pi} e^{-\left(E_{K}-E_{\pi}\right) T / 2}} \rightarrow \frac{\left(\left\langle\pi\left(p^{\prime}\right)\right| S|K(p)\rangle\right)^{2}}{\left(4 E_{K} E_{\pi}\right)^{2}}
\end{gathered}
$$

Results from the different fits

	$f_{+}(0)$	$\log C$	$\Lambda_{+} \times 10^{3}$
SU(2) ChPT FSE type1	$0.9696(49)$	$0.1894(053)$	$24.4(1.1)$
SU(2) ChPT FSE type2	$0.9693(49)$	$0.1901(052)$	$24.5(1.1)$
z-expansion FSE type1	$0.9702(70)$	$0.1864(142)$	$26.9(1.1)$
z-expansion FSE type2	$0.9704(78)$	$0.1868(195)$	$26.7(1.5)$
SU(2) ChPT no f_{0} pole	$0.9653(49)$	$0.2048(082)$	$24.4(1.1)$

