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Motivation

1.3 Leptonic and semileptonic meson decays

With experimental measurements of the inclusive Kl2 and πl2 decay rates and precise

knowledge of the radiative corrections, eq. (1.83) can be used to obtain the value of

the product |Vus/Vud|2 × f2
K/f2

π , from which one can estimate Vus once estimated the

ratio fK/fπ on the lattice.

1.3.2 Semileptonic Kaon decays

Semileptonic decays are processes in which the final state is composed of leptons

and hadrons; among them one can quote

N → N ′ + e± + νe(ν̄e) (1.85)

π+ → π0 + e+ + νe (1.86)

k+ → π0 + e+ + νe (1.87)

D+ → K̄0 + e+ + ν̄e (1.88)

where N is a generic nucleus and N ′ differs from N by one u → d in the valence content.

In each decay the quark underlying process is q → q′′lνl and the quark q′ participate

only as spectator (see fig. 1.4).

Figure 1.4: Semileptonic decay prototype - Feynman diagram which contribute to

the semileptonic decay process M → M ′lν̄l. The hadronic part (bottom) must be evaluated

by means of non perturbative methods.

In this case the situation is much more complicated, with respect to the leptonic

case, because of the composition of the final state (leptons plus an hadron); writing

25

Kaon semileptonic decay rate is regulated by the vector and scalar form factors f+ and f0 
which are functions of the square momentum transfer

Semileptonic decay rate :

these form factors are measured with increasing precision by 
experiments. 
Typical lattice calculations focus on the value of the form 
factors at q2=0, it is however interesting to compute these 
form factors on the lattice in all the physical q2 range and to 
compare them with experimental measurements

4 M. Antonelli et al.: Evaluation of |Vus| and Standard Model tests from kaon data

The fK/fπ value from HPQCD/UKQCD [35] is

fK/fπ = 1.189(2)stat(7)syst. (7)

This result is in good agreement with the BMW and MILC
results. In particular, there is no apparent systematic dif-
ference between the results obtained using staggered and
clover fermions. This seems to suggest that possible issues
associated with the use of staggered fermions (in partic-
ular, the rooting issue [39–41]) are not relevant to the
determination of fK/fπ, at least at the present level of
accuracy.

In order to fully exploit the data set in Fig. 1, we aver-
age the results of the analyses from BMW, MILC ’09, and
HPQCD/UKQCD discussed above (Eqs. (5), (6), and (7)).
Since these results are consistent, we calculate the average
weighted by the statistical errors on the individual results.
This gives our reference central value and its statistical er-
ror. To obtain the total error on this average, we assume a
systematic error of 0.006, equal to the smallest systematic
error quoted among the three inputs. This is justified on
the basis of the agreement between the results. Adding the
statistical and systematic errors in quadrature, we obtain

fK/fπ = 1.193(6), (8)

which is quite consistent with all the results in Fig. 1, in-
cluding those obtained with staggered fermions and from
preliminary studies. In the above average, possible corre-
lations between the HPQCD/UKQCD and MILC results
due to the use of a common ensemble with a = 0.09 fm
has been neglected. However, since the valence quarks are
treated differently in these two studies, and the analy-
ses are completely different, any potential correlations are
diluted. The above average is consistent with, but has a
smaller total uncertainty than, both the average from the
most recent Lattice conference [6], fK/fπ = 1.196(10) and
the preliminary FLAG result [7], fK/fπ = 1.190(10). As
we note in Sect. 1, our use of this average to obtain the re-
sults presented in Sects. 4.5 and 4.6 represents a scientific
choice. Our value for |Vus/Vud| × fK/fπ (Eq. (55)) may
be used with an alternate choice for fK/fπ to rederive the
results of Sects. 4.5 and 4.6, if desired.

Updates from PACS-CS, RBC/UKQCD, and JLQCD,
in addition to new results (for example, an NF = 2+1+1
result from ETMC [42]), have already been announced
and will soon improve the present situation.

2.2 Kℓ3 rates in the Standard Model

The Kℓ3 decays provide ideal channels for the determi-
nation of |Vus|. The starting point of the analysis is the
expression for the photon-inclusive K → πℓν (Kℓ3(γ)) de-
cay rate:

ΓKℓ3
=

G2
Fm

5
K

192π3
C2

KSEW

(

|Vus|fK0π−

+ (0)
)2

IKℓ

×
(

1 + δKℓ
EM + δKπ

SU(2)

)2
,

(9)

where GF is the Fermi constant as determined from muon
decays, SEW = 1.0232(3) [43,8] is the short-distance elec-
troweak correction, CK is a Clebsch-Gordan coefficient
(1 for K0 and 1/

√
2 for K± decays), fK0π−

+ (0) is the
K0 → π− vector form factor at zero momentum trans-
fer, and IKℓ is a phase-space integral that is sensitive to
the momentum dependence of the form factors. The latter
describe the hadronic matrix elements

⟨π(pπ)|s̄γµu|K(pK)⟩ =
(pπ + pK)µf

Kπ
+ (t) + (pK − pπ)µf

Kπ
− (t), (10)

where t = (pK − pπ)2 = (pℓ + pν)2. The vector form fac-
tor f+(t) represents the P-wave projection of the crossed
channel matrix element ⟨0|s̄γµu|Kπ⟩. The scalar form fac-
tor f0(t) describes the S-wave projection, and in terms of
f+(t) and f−(t) reads

f0(t) = f+(t) +
t

m2
K −m2

π

f−(t). (11)

By construction, f0(0) = f+(0). Since f+(0) is not di-

rectly measurable, it is convenient to factor out fK0π−

+ (0)
in Eq. (9) and then normalize the form factors for all chan-

nels to fK0π−

+ (0), denoted simply as f+(0) in the following.
The normalized form factors are then defined as

f̄+(t) =
f+(t)

f+(0)
, f̄0(t) =

f0(t)

f+(0)
, f̄+(0) = f̄0(0) = 1. (12)

Finally, δKℓ
EM represents the channel-dependent long-

distance EM corrections (Sect. 2.2.2) and δKπ
SU(2) the cor-

rection for isospin breaking (Sect. 2.2.3).
To extract |Vus| from Kℓ3 decays using Eq. (9), one

must measure one or more photon-inclusive Kℓ3 decay
rates, compute the phase space integrals from form fac-
tor measurements, and make use of theoretical results for
f+(0), δKℓ

EM, and δKπ
SU(2). We discuss the evaluation of these

different ingredients in the following.

2.2.1 Theoretical determination of f+(0)

The vector form factor at zero momentum transfer f+(0)
is the most critical hadronic quantity required for the de-
termination of |Vus| from Kℓ3 decays via Eq. (9). By con-
struction, f+(0) is defined in the absence of electromag-
netic corrections. More explicitly, f+(0) is defined by the
K0 → π− matrix element of the vector current, Eq. (10),
keeping kaon and pion masses at their physical values.

In this section, we restrict our discussion to the eval-
uation of f+(0) in the isospin limit2 (mu = md). This
hadronic quantity cannot be computed in perturbative
QCD, but is highly constrained by SU(3) and chiral sym-
metry. In the chiral limit and, more generally, in the SU(3)

2 The choice of the K0 → π− form factor as the common
normalization is motivated by its smoothness in the mu = md

limit (see Sect. 2.2.3).
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Simulation Details

Something on the action:

✦ Wilson Twisted Mass action at maximal twist with 
Nf=2+1+1 sea quarks  

✦ Osterwalder-Seiler valence quark action 

✦ Iwasaki gluon action 



Simulation Details

The valence light quark mass is put equal to the sea quark mass

Details of the ensembles used in this Nf  =2+1+1 analysis
� L(fm) M⇡(MeV) M⇡L

1.90 2.84 245.41 3.53
282.13 4.06
314.43 4.53

1.90 2.13 282.13 3.05
343.68 3.71
396.04 4.27
442.99 4.78

1.95 2.61 238.67 3.16
280.95 3.72
350.12 4.64
408.13 5.41

1.95 1.96 434.63 4.32
2.10 2.97 211.18 3.19

242.80 3.66
295.55 4.46

� V/a4 ⇥

1.90 323 � 64 0.0, ±0.400,

±0.933, ±1.733

243 � 48 0.0, ±0.300,

±0.700, ±1.300

1.95 323 � 64 0.0, ±0.366,

±0.854, ±1.588

243 � 48 0.0, ±0.275,

±0.641, ±1.191

2.10 483 � 96 0.0, ±0.424,

±0.986, ±1.832

Table 1: Input values for ⇥ for each � and volume.

ensemble � V/a4 aµsea = aµl aµ⇥ aµ� Ncfg aµs aµc

A30.32 1.90 323 ⇥ 64 0.0030 0.15 0.19 150 0.0145, 0.1800, 0.2200,

A40.32 0.0040 90 0.0185, 0.2600, 0.3000,

A50.32 0.0050 150 0.0225 0.3600, 0.4400

A40.24 1.90 243 ⇥ 48 0.0040 0.15 0.19 150

A60.24 0.0060 150

A80.24 0.0080 150

A100.24 0.0100 150

B25.32 1.95 323 ⇥ 64 0.0025 0.135 0.170 150 0.0141, 0.1750, 0.2140,

B35.32 0.0035 150 0.0180, 0.2530, 0.2920,

B55.32 0.0055 150 0.0219 0.3510, 0.4290

B75.32 0.0075 75

B85.24 1.95 243 ⇥ 48 0.0085 0.135 0.170 150

D15.48 2.10 483 ⇥ 96 0.0015 0.12 0.1385 60 0.0118, 0.1470, 0.1795,

D20.48 0.0020 90 0.0151, 0.2120, 0.2450,

D30.48 0.0030 90 0.0184 0.2945, 0.3595

Table 2: Values of the simulated sea and valence quark bare masses for each gauge ensemble

used in this work.
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Range of the simulated pion masses

Table 3: Comparison between di�erent FSE corrections

Quantity No Correction GL CDH CWW
ml(MeV) 3.68(14) 3.76(14) 3.73(13) 3.72(13)
r0(fm) 0.464(12) 0.466(12) 0.468(12) 0.470(12)

l̄3 3.42(20) 3.35(20) 3.34(21) 3.24(25)
l̄4 4.83(9) 4.77(9) 4.76(9) 4.69(10)

B0(MeV) 2548(99) 2497(97) 2500(93) 2515(90)
f0(MeV) 120.8(1) 120.9(1) 120.9(1) 121.1(2)

Table 4: Comparison between di�erent fits

Quantity CWW CWW+Baer
ml(MeV) 3.66(13) 3.72(13)
r0(fm) 0.466(12) 0.470(12)

l̄3 3.45(22) 3.24(25)
l̄4 4.78(9) 4.69(10)

Table 5: Comparison between di�erent analysis

r0 Analysis M<ss> Analysis
Quantity Chiral Fit Polynomial Fit Chiral Fit Polynomial Fit
ml(MeV) 3.72(13) 3.87(17) 3.66(10) 3.75(13)
r0(GeV �1) 2.39(6) 2.42(7) - -
r0(fm) 0.470(12) 0.477(14) - -

Mss(GeV ) - - 0.672(9) 0.654(10)
a(� = 1.90)(fm) 0.0886(27) 0.0899(31) 0.0868(33) 0.0892(34)
a(� = 1.95)(fm) 0.0815(21) 0.0827(25) 0.0799(27) 0.0820(28)
a(� = 2.10)(fm) 0.0619(11) 0.0628(13) 0.0607(14) 0.0623(15)

B0(MeV) 2515(90) - 2551(73) -
f0(MeV) 121.1(2) - 121.3(2) -

l̄3 3.24(25) - 2.94(20) -
l̄4 4.69(10) - 4.65(8) -

Table 6: Comparison between di�erent analysis
Lattice Spacings

a(� = 1.90) 0.0885(36)fm
a(� = 1.95) 0.0815(30)fm
a(� = 2.10) 0.0619(18)fm

Table 7: Comparison between di�erent fits

Quantity No Correction GL CDH
ms(MeV) 101.1(4.4) 101.1(4.4) 101.6(4.4)
fK(MeV) 151.8(2.6) 152.2(2.6) 152.3(2.6)
fK/f� 1.164(20) 1.167(20) 1.168(20)
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Table 2: Values of the simulated sea and valence quark bare masses for each gauge ensemble

used in this work.
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To inject momenta we used  
non-periodic boundary conditions

Three different values of the lattice 
spacing: 0.06 fm ÷ 0.09 fm
Different volumes: 2 fm ÷ 3 fm
Pion masses in range 210 ÷ 440 MeV

Momentum range up to 350 MeV



General strategy

Over-constrain the scalar and vector form factors using a ratio of 3-points 
correlation function and the scalar density and extract with a combined fit our 
best determination of f0 and f+ on each ensemble for different values of q2

✦ SU(2) inspired formula,  

✦ z expansion     

✦ polar or polynomial behavior of f0 as a function of q2 

Perform a combined fit of the scalar and vector form factors f0 and f+ studying 
simultaneously the q2, ml and a2 dependence using different assumptions 

Once we obtain the form factors as a function of the square 4-momentum 
transfer, we compute f0 and f+ in a set of reference q2 values and fit them with a 
dispersive parametrization to compare our determination of Λ+ and logC with 
the experimental one



Extraction of the form factors
The two kaon semileptonic form factors f0 and f+ can be determined from the matrix element 
of the vector current
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an alternative way to determine f0 is to use the scalar density

in practice we get these matrix elements fitting the time dependence of appropriate 
combinations of 3-points correlation functions

therefore using both matrix elements we are over-constraining f0 and f+ and we get our 
determination of the form factors on each ensemble for different values of q2 from a 
combined fit 



Plateaux

example of plateaux of V0 and V1 for all the selected kinematics 

      β = 1.90 
µl(sea) = 0.0050 
     µs = 0.0145



SU(2) ChPT

The first formula used to fit the q2, ml and a2 dependence of the vector and scalar form 
factor simultaneously is obtained(1) expanding in x the SU(3) NLO expressions found by 
G&L(2)
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we adopt a pole behavior for F+,0 (which would only arise at higher order) and a 
polynomial behavior for C+,0 

(1)  [Lubicz et al. arXiv:1012.3573]

(2)   [Gasser Leutwyler NPB 1985]

SU(2) ChPT



SU(2) ChPT
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we adopt a pole behavior for F+,0 (which would only arise at higher order) and a 
polynomial behavior for C+,0 

(1)  [Lubicz et al. arXiv:1012.3573]

(2)   [Gasser Leutwyler NPB 1985]

SU(2) ChPT

MV = MPS + ΔPS ,V

MS = MPS + ΔPS ,S

MPS has been calculated on the lattice 
ΔPS,V and ΔPS,S are taken from the PDG 



SU(2) ChPT

While for the vector form factor, a pole parameterization with the dominance of the 
K∗(892) (MV ∼ 892 MeV) is in good agreement with the data, for the scalar form factor, 
such dominance is less clear 

For this reason we also tried a global fit in which we remove the pole parametrization for 
f0 replacing it with a polynomial dependence in q2

The first formula used to fit the q2, ml and a2 dependence of the vector and scalar form 
factor simultaneously is obtained(1) expanding in x the SU(3) NLO expressions found by 
G&L(2)
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(2)   [Gasser Leutwyler NPB 1985]

SU(2) ChPT



(modified) z-expansion 

We also tried to fit the q2, ml and a2 dependence of the vector and scalar form factor 
simultaneously using the z-expansion(1) in which however the parameters a and b depend 
on the light quark mass and on the lattice spacing squared

f+ (s) = F+ (s) 1+C+ (s)x +
MK

2

(4π f )2
− 3
4
x log x − xT1

+ (s)−T2
+ (s)⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

f0 (s) = F0 (s) 1+C0 (s)x +
MK

2

(4π f )2
− 3
4
x log x − xT1

0 (s)−T2
0 (s)⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

s = q2 /M 2
K x = M 2

π /M
2
K

F+,0 (s) =
F(a2, s)

1− q2

M 2
V ,S

C+,0 (s) = C +C (1)
+,0 s +C

(2)
+,0 s

2

f+ (q
2 ) =

a0 ml ,a
2( )+ a1 ml ,a

2( ) z + 12 z
2⎡

⎣⎢
⎤
⎦⎥

1− q2

M 2
V

f0 (q
2 ) =

b0 ml ,a
2( )+ b1 ml ,a

2( ) z + 12 z
2⎡

⎣⎢
⎤
⎦⎥

1− q2

M 2
S

z =
t+ − q

2 − t+ − t0
t+ − q

2 + t+ − t0

t+ = MK +Mπ( )2

t0 = MK +Mπ( ) MK − Mπ( )2
f+ (0) = 0.9684(66)
f+ (0) = 0.9684(59)stat+fit (29)syst
logC = 0.1937(138)
logC = 0.1937(113)stat+fit (90)syst
Λ+ = 25.2(1.6) ×10

−3

Λ+ = 25.2(1.2)stat+fit (1.1)syst ×10
−3

logCEXP = 0.1985(70)
Λ+ EXP = 25.75(36) ×10

−3

f+ (0) = 0.9704(33) MILC
f+ (0) = 0.9684(38) RBC/UKQCD

f+ (s) = F+ (s) 1+C+ (s)x +
MK

2

(4π f )2
− 3
4
x log x − xT1

+ (s)−T2
+ (s)⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

f0 (s) = F0 (s) 1+C0 (s)x +
MK

2

(4π f )2
− 3
4
x log x − xT1

0 (s)−T2
0 (s)⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

s = q2 /M 2
K x = M 2

π /M
2
K

F+,0 (s) =
F(a2, s)

1− q2

M 2
V ,S

C+,0 (s) = C +C (1)
+,0 s +C

(2)
+,0 s

2

f+ (q
2 ) =

a0 ml ,a
2( )+ a1 ml ,a

2( ) z + 12 z
2⎡

⎣⎢
⎤
⎦⎥

1− q2

M 2
V

f0 (q
2 ) =

b0 ml ,a
2( )+ b1 ml ,a

2( ) z + 12 z
2⎡

⎣⎢
⎤
⎦⎥

1− q2

M 2
S

z =
t+ − q

2 − t+ − t0
t+ − q

2 + t+ − t0

t+ = MK +Mπ( )2

t0 = MK +Mπ( ) MK − Mπ( )2
f+ (0) = 0.9684(66)
f+ (0) = 0.9684(59)stat+fit (29)syst
logC = 0.1937(138)
logC = 0.1937(113)stat+fit (90)syst
Λ+ = 25.2(1.6) ×10

−3

Λ+ = 25.2(1.2)stat+fit (1.1)syst ×10
−3

logCEXP = 0.1985(70)
Λ+ EXP = 25.75(36) ×10

−3

f+ (0) = 0.9704(33) MILC
f+ (0) = 0.9684(38) RBC/UKQCD

where we adopt for the parameters a and b a polynomial dependence on the lattice 
spacing squared and on the light quark mass

(1)  Bourrely Caprini and Lellouch 
    [Phys.Rev. D79 (2009) 013008]

(modified) z-expansion



FSE
An investigation of ensemble A40.24 and A40.32 which share the same pion mass at 
different volumes shows the presence of non negligible FSE in the slope of the form factors. 
This can be seen in the plot below for f+(q2)

For this reason we decided to add a FSE correction 
term in the slope and to fit its magnitude from our 
data
following what was done in [R. Frezzotti et al. PRD 79(2009)] 
for FSE correction in the pion electromagnetic form 
factor we adopt the following phenemenological 
correction for the slope

1+ PM 2
π

e−MπL

(MπL)
αeff

where P is a free parameter determined during the 
global fit and ⍺eff  is an effective fractional power 

we tested different values of ⍺eff  and decided that a good estimate of the systematic uncertainty 
associated to the FSE is given by the spread on the final results found with ⍺eff=0 and ⍺eff=3/2  



Comparison between data and global fit on given ensembles
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Global fit
Two example of the form factors obtained with different global fit in the continuum limit 
and at the physical light and strange quark mass. In the plot is also shown the form factor 
at zero momentum transfer relevant for the extraction of |Vus|

SU(2) ChPT (modified) z-expansion
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Global fit
Two example of the form factors obtained with different global fit in the continuum limit 
and at the physical light and strange quark mass. In the plot is also shown the form factor 
at zero momentum transfer relevant for the extraction of |Vus|
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The results can be compared with a dispersive fit of experimental data 
reported in (1). The most relevant parameters of the dispersive 
parametrization of the form factors are Λ+ and logC. 
To get our own determination of Λ+ and logC we compute, for each 
analysis, f0 and f+ in a set of reference q2 values in the physical region 
and fit them with a dispersive formula.

SU(2) ChPT (modified) z-expansion

(1)[Moulson arXiv:1411.5252(2014)]

dispersive fit with experimental 
data from: 
KTeV, KLOE, NA48/2, ISTRA+ 



Dispersive parametrization
Dispersive parametrization of the form factors is written as follows 
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The most interesting and well-motivated parameteri-
zations of Class I are those based on dispersion relations.
These are based on the observation that the vector and
scalar form factors are analytic functions in the complex
t-plane, except for a cut along the positive real axis for
t ≥ tlim ≡ (mK + mπ)2, where they develop discontinu-
ities. One can therefore write

f̄+,0(t) =
1

π

∫ ∞

tlim

ds′
Im f̄+,0(s′)

(s′ − t− iϵ)
+ subtractions, (30)

where the imaginary part, Im f̄+,0(s′), can be determined
from data on Kπ scattering, and the ultraviolet compo-
nent of the integral is absorbed into the (polynomial) sub-
traction terms. In the vector case, the dispersive parame-
terization turns out to be numerically very similar to the
pole parameterization due to dominant contribution to
Im f̄+(s′) from the K∗(892). On the other hand, the dis-
persive parameterization is particularly useful in the scalar
case, where there is no dominant one-particle intermediate
state.

In addition to the analyticity constraints, the scalar
form factor must satisfy an additional theoretical con-
straint dictated by chiral symmetry. The Callan-Treiman
(CT) theorem [72] implies that the scalar form factor at
t = ∆Kπ ≡ m2

K − m2
π is determined in terms of fK/fπ

and f+(0) up to O(mu,d) corrections:

C ≡ f̄0(∆Kπ) =
fK
fπ

1

f+(0)
+∆CT . (31)

The quantity ∆CT = O(mu,d/4πfπ) can be evaluated in
ChPT. At NLO in the isospin limit [44],

∆CT = (−3.5± 8)× 10−3, (32)

where the error is a conservative estimate of the higher-
order corrections [73]. Results consistent with Eq. (32)
from NNLO estimates beyond the isospin limit have been
presented in Ref. 49,74. As discussed in Sect. 3.5.3, Eq. (31)
provides a useful test of the consistency of the lattice re-
sults for fK/fπ and f+(0) with experimental data on the
scalar form factors.

2.2.5 Dispersive parameterization for the form factors

Motivated by the existence of the CT theorem, a particu-
larly appealing dispersive parameterization for the scalar
form factor has been proposed [71]. Two subtractions are
performed, one at t = 0, where by definition f̄0(0) = 1,
and the other at the CT point, t = ∆Kπ . Assuming that
the scalar form factor has no zeroes, this leads to

f̄disp
0 (t) = exp

[

t

∆Kπ
(lnC −G(t))

]

, (33)

with

G(t) =
∆Kπ(∆Kπ − t)

π

×
∫ ∞

tlim

ds

s

φ0(s)

(s−∆Kπ)(s− t− iϵ)
.

(34)

With this parameterization, the only free parameter to be
determined from data is C.

The phase φ0(s) can be identified in the elastic region
with the S-wave (Kπ)I=1/2 scattering phase: performing
two subtractions minimizes the contributions from the un-
known high-energy phase, which in Ref. 71 is simply and
conservatively assumed to lie within the interval [0, 2π).
The resulting function G(t) in Eq. (34) does not exceed
20% of the expected value of lnC, while the theoretical
uncertainties are at most 10% of the value of G(t) [71].
The expressions for the leading slope parameters in the
Taylor expansion as functions of lnC are [75]

λ′
0 =

m2
π

∆Kπ
[lnC −G(0)] , (35a)

λ′′
0 = (λ′

0)
2 − 2

m4
π

∆Kπ
G′(0), (35b)

λ′′′
0 = (λ′

0)
3 − 6

m4
π

∆Kπ
G′(0)λ′

0 − 3
m6

π

∆Kπ
G′′(0), (35c)

where

G(0) = 0.0398(44), (36a)

−2
m4

π

∆Kπ
G′(0) = 4.16(56)× 10−4, (36b)

−3
m6

π

∆Kπ
G′′(0) = 2.72(21)× 10−5. (36c)

A dispersive representation for the vector form factor
can be been built in a similar way [75]. Since there is
no equivalent of the CT theorem in this case, the two
subtractions are both performed at t = 0. The expression
analogous to Eq. (33) for the vector form factor is

f̄disp
+ (t) = exp

[

t

m2
π

(Λ+ +H(t))

]

, (37)

with

H(t) =
m2

πt

π

∫ ∞

tlim

ds

s2
φ+(s)

(s− t− iϵ)
. (38)

Here the fit parameter is Λ+ ≡ m2
π df̄+(t)/dt|t=0 and the

phase φ+(s) is derived from P-wave (Kπ)I=1/2 elastic
scattering. As in the case of the scalar form factor, the
uncertainty on H(t) has a small influence on the determi-
nation of Λ+. The expressions for the leading slopes in the
Taylor expansion as functions of Λ+ are [75].

λ′
+ = Λ+, (39a)

λ′′
+ = (λ′

+)
2 + 2m2

πH
′(0), (39b)

λ′′′
+ = (λ′

+)
3 + 6m2

πH
′(0)λ′

+ + 3m4
πH

′′(0), (39c)

where

2m2
π H

′(0) = 5.79(97)× 10−4, (40a)

3m4
π H

′′(0) = 2.99(21)× 10−5. (40b)

The principal results presented in the following sec-
tions are based on the dispersive parameterizations of
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where the Taylor expansion parameters are related to each other by these equations

P- and S-wave (Kπ)I=1/2 elastic scattering can be used to set priors 
on G and H so that we are left with only three free parameters 
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author from the experiment’s polynomial fit results. The FlaviaNet 2010 average and
the new average, with the NA48/2 result included, are also shown.

older measurements not used in the present analysis (32 measurements in all), and
gives χ2/ndf = 51.8/25 (P = 0.13%).
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BR(K−
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Dispersive parametrization
Dispersive parametrization of the form factors is written as follows 
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The most interesting and well-motivated parameteri-
zations of Class I are those based on dispersion relations.
These are based on the observation that the vector and
scalar form factors are analytic functions in the complex
t-plane, except for a cut along the positive real axis for
t ≥ tlim ≡ (mK + mπ)2, where they develop discontinu-
ities. One can therefore write

f̄+,0(t) =
1

π

∫ ∞

tlim

ds′
Im f̄+,0(s′)

(s′ − t− iϵ)
+ subtractions, (30)

where the imaginary part, Im f̄+,0(s′), can be determined
from data on Kπ scattering, and the ultraviolet compo-
nent of the integral is absorbed into the (polynomial) sub-
traction terms. In the vector case, the dispersive parame-
terization turns out to be numerically very similar to the
pole parameterization due to dominant contribution to
Im f̄+(s′) from the K∗(892). On the other hand, the dis-
persive parameterization is particularly useful in the scalar
case, where there is no dominant one-particle intermediate
state.

In addition to the analyticity constraints, the scalar
form factor must satisfy an additional theoretical con-
straint dictated by chiral symmetry. The Callan-Treiman
(CT) theorem [72] implies that the scalar form factor at
t = ∆Kπ ≡ m2

K − m2
π is determined in terms of fK/fπ

and f+(0) up to O(mu,d) corrections:

C ≡ f̄0(∆Kπ) =
fK
fπ

1

f+(0)
+∆CT . (31)

The quantity ∆CT = O(mu,d/4πfπ) can be evaluated in
ChPT. At NLO in the isospin limit [44],

∆CT = (−3.5± 8)× 10−3, (32)

where the error is a conservative estimate of the higher-
order corrections [73]. Results consistent with Eq. (32)
from NNLO estimates beyond the isospin limit have been
presented in Ref. 49,74. As discussed in Sect. 3.5.3, Eq. (31)
provides a useful test of the consistency of the lattice re-
sults for fK/fπ and f+(0) with experimental data on the
scalar form factors.

2.2.5 Dispersive parameterization for the form factors

Motivated by the existence of the CT theorem, a particu-
larly appealing dispersive parameterization for the scalar
form factor has been proposed [71]. Two subtractions are
performed, one at t = 0, where by definition f̄0(0) = 1,
and the other at the CT point, t = ∆Kπ . Assuming that
the scalar form factor has no zeroes, this leads to

f̄disp
0 (t) = exp

[

t

∆Kπ
(lnC −G(t))

]

, (33)

with

G(t) =
∆Kπ(∆Kπ − t)

π

×
∫ ∞

tlim

ds

s

φ0(s)

(s−∆Kπ)(s− t− iϵ)
.

(34)

With this parameterization, the only free parameter to be
determined from data is C.

The phase φ0(s) can be identified in the elastic region
with the S-wave (Kπ)I=1/2 scattering phase: performing
two subtractions minimizes the contributions from the un-
known high-energy phase, which in Ref. 71 is simply and
conservatively assumed to lie within the interval [0, 2π).
The resulting function G(t) in Eq. (34) does not exceed
20% of the expected value of lnC, while the theoretical
uncertainties are at most 10% of the value of G(t) [71].
The expressions for the leading slope parameters in the
Taylor expansion as functions of lnC are [75]

λ′
0 =
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where
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−3
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G′′(0) = 2.72(21)× 10−5. (36c)

A dispersive representation for the vector form factor
can be been built in a similar way [75]. Since there is
no equivalent of the CT theorem in this case, the two
subtractions are both performed at t = 0. The expression
analogous to Eq. (33) for the vector form factor is

f̄disp
+ (t) = exp

[
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(Λ+ +H(t))
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, (37)

with

H(t) =
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Here the fit parameter is Λ+ ≡ m2
π df̄+(t)/dt|t=0 and the

phase φ+(s) is derived from P-wave (Kπ)I=1/2 elastic
scattering. As in the case of the scalar form factor, the
uncertainty on H(t) has a small influence on the determi-
nation of Λ+. The expressions for the leading slopes in the
Taylor expansion as functions of Λ+ are [75].
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3m4
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′′(0) = 2.99(21)× 10−5. (40b)

The principal results presented in the following sec-
tions are based on the dispersive parameterizations of
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larly appealing dispersive parameterization for the scalar
form factor has been proposed [71]. Two subtractions are
performed, one at t = 0, where by definition f̄0(0) = 1,
and the other at the CT point, t = ∆Kπ . Assuming that
the scalar form factor has no zeroes, this leads to

f̄disp
0 (t) = exp

[

t

∆Kπ
(lnC −G(t))

]

, (33)

with

G(t) =
∆Kπ(∆Kπ − t)

π

×
∫ ∞

tlim

ds

s

φ0(s)

(s−∆Kπ)(s− t− iϵ)
.

(34)

With this parameterization, the only free parameter to be
determined from data is C.

The phase φ0(s) can be identified in the elastic region
with the S-wave (Kπ)I=1/2 scattering phase: performing
two subtractions minimizes the contributions from the un-
known high-energy phase, which in Ref. 71 is simply and
conservatively assumed to lie within the interval [0, 2π).
The resulting function G(t) in Eq. (34) does not exceed
20% of the expected value of lnC, while the theoretical
uncertainties are at most 10% of the value of G(t) [71].
The expressions for the leading slope parameters in the
Taylor expansion as functions of lnC are [75]

λ′
0 =

m2
π

∆Kπ
[lnC −G(0)] , (35a)

λ′′
0 = (λ′

0)
2 − 2

m4
π

∆Kπ
G′(0), (35b)

λ′′′
0 = (λ′

0)
3 − 6

m4
π

∆Kπ
G′(0)λ′

0 − 3
m6

π

∆Kπ
G′′(0), (35c)

where

G(0) = 0.0398(44), (36a)

−2
m4

π

∆Kπ
G′(0) = 4.16(56)× 10−4, (36b)

−3
m6

π

∆Kπ
G′′(0) = 2.72(21)× 10−5. (36c)

A dispersive representation for the vector form factor
can be been built in a similar way [75]. Since there is
no equivalent of the CT theorem in this case, the two
subtractions are both performed at t = 0. The expression
analogous to Eq. (33) for the vector form factor is

f̄disp
+ (t) = exp

[

t

m2
π

(Λ+ +H(t))

]

, (37)

with

H(t) =
m2

πt

π

∫ ∞

tlim

ds

s2
φ+(s)

(s− t− iϵ)
. (38)

Here the fit parameter is Λ+ ≡ m2
π df̄+(t)/dt|t=0 and the

phase φ+(s) is derived from P-wave (Kπ)I=1/2 elastic
scattering. As in the case of the scalar form factor, the
uncertainty on H(t) has a small influence on the determi-
nation of Λ+. The expressions for the leading slopes in the
Taylor expansion as functions of Λ+ are [75].

λ′
+ = Λ+, (39a)

λ′′
+ = (λ′

+)
2 + 2m2

πH
′(0), (39b)

λ′′′
+ = (λ′

+)
3 + 6m2

πH
′(0)λ′

+ + 3m4
πH

′′(0), (39c)

where

2m2
π H

′(0) = 5.79(97)× 10−4, (40a)

3m4
π H

′′(0) = 2.99(21)× 10−5. (40b)

The principal results presented in the following sec-
tions are based on the dispersive parameterizations of

where the Taylor expansion parameters are related to each other by these equations

P- and S-wave (Kπ)I=1/2 elastic scattering can be used to set priors 
on G and H so that we are left with only three free parameters 
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Figure 1: 1σ confidence contours for form factor parameters (Ke3-Kµ3 averages) from
dispersive fits, for different experiments. The NA48/2 result was converted by the
author from the experiment’s polynomial fit results. The FlaviaNet 2010 average and
the new average, with the NA48/2 result included, are also shown.

older measurements not used in the present analysis (32 measurements in all), and
gives χ2/ndf = 51.8/25 (P = 0.13%).

Recently, the ISTRA+ experiment at Protvino has published a result for the ratio
BR(K−

e3)/BR(ππ
0) from the analysis of data taken in 2001 [12]. The sample of Ke3

events is claimed to be inclusive of inner bremsstrahlung (IB). However, radiative
events are not generated in the simulation used to calculate the acceptance, so there
is some uncertainty as to how inclusive the measurement is. In part, this is taken into
account in the evaluation of the systematic uncertainties via variation of the angular
cut used to accept a possible IB photon. This measurement is not yet included in
the evaluation of Vus f+(0). The effect of including it in the fit to K± rate data is to
change the result for BR(Ke3) from 5.088(27)% to 5.083(27)%, with a similar effect
on BR(Kµ3), and negligible effects on the other BRs and on the fit quality.

2.2 Form factor parameters

In 2012, the NA48/2 experiment released preliminary results for the form factors for
both K±

e3 and K±
µ3 decays [13]. The fits were performed using one of two parameteri-

zations,

• polynomial: (λ′
+,λ

′′
+) for Ke3, (λ′

+,λ
′′
+,λ0) for Kµ3, or

3

experimental results in 
the lnC, Λ+ plane 



results and systematics
Combining the results from all these analyses we get:

in particular:

stat+fit is referred to both the statistical uncertainties (including the total error on the light 
and strange quark mass determination) and the uncertainties due to the fitting procedure
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logC = 0.1937(138)
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Λ+ = 25.2(1.6) ×10

−3

Λ+ = 25.2(1.2)stat+fit (1.1)sist ×10
−3
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−3f+ (0) = 0.9684(66)

f+ (0) = 0.9684(59)stat+fit (29)syst
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logC = 0.1937(113)stat+fit (90)syst
Λ+ = 25.2(1.6) ×10

−3
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−3

logCEXP = 0.1985(70)
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−3

f+ (0) = 0.9704(33) MILC
f+ (0) = 0.9684(38) RBC
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syst takes into account: the chiral extrapolation, which have been evaluated comparing the 
different fit formulas; FSE which are relevant for the slope of the form factors, and 
discretization  effect, which have been evaluated comparing with a fit performed after 
removing all the data at the coarsest lattice spacing.

NEW

NEW



comparison with other results
The results from our analysis:
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Testing the CKM unitarity
Testing the first row

Figure 2: The plot compares the information for |Vud|, |Vus| obtained on the lattice with
the experimental result extracted from nuclear β transitions. The dotted arc indicates the
correlation between |Vud| and |Vus| that follows if the three-flavour CKM-matrix is unitary.

4.4 Testing the Standard Model

In the Standard Model, the CKM matrix is unitary. In particular, the elements of the first
row obey

|Vu|2 ≡ |Vud|2 + |Vus|2 + |Vub|2 = 1 . (10)

The tiny contribution from |Vub| is known much better than needed in the present context:
|Vub| = 4.15(49) · 10−3 [88]. In the following, we first discuss the evidence for the validity of
the relation (41) and only then use it to analyze the lattice data within the Standard Model.

In Figure 2, the correlation between |Vud| and |Vus| imposed by the unitarity of the CKM
matrix is indicated by a dotted arc (more precisely, in view of the uncertainty in |Vub|, the
correlation corresponds to a band of finite width, but the effect is too small to be seen here).
The plot shows that the data for Nf = 2 + 1 are in good agreement with this constraint.
Numerically, the outcome for the sum of the squares of the first row of the CKM matrix reads
|Vu|2 = 0.985(13). The Standard Model thus passes a nontrivial test that exclusively involves
lattice data and well-established kaon decay branching ratios. Combining the lattice results
for f+(0) and fK±/fπ± in (38) and (40) with the β-decay value of |Vud| quoted in (33), the
test sharpens considerably: the lattice result for f+(0) leads to |Vu|2 = 0.9992(6), while the
one for fK±/fπ± implies |Vu|2 = 1.0000(6), thus confirming CKM unitarity at the permille
level.

Repeating the analysis for Nf = 2, we find |Vu|2 = 1.029(35) with the lattice data alone.
The number is somewhat larger than 1, in accordance with the fact that the dotted curve
passes just outside the blue contour. Moreover, it only concerns the comparison of the Nf = 2
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1.2 The Cabibbo Kobayashi Maskawa Matrix

In this section we will continue the brief overview on the Standard Model flavour sector by

describing the quark flavour mixing matrix, also known as Cabibbo-Kobayashi-Maskawa

matrix.

This matrix enters the Lagrangian because weak interactions in the quark sector are not

flavour diagonal in the mass eigenstates basis.

1.2.1 Definition & parametrization

In the previous section we applied the transformation (1.27) to the fermionic fields in

order to diagonalize the mass matrices Mi in the Yukawa lagrangian. It is then neces-

sary to investigate the consequences of these transformation in the other part of the SM

lagrangian. In what follows we will only focus on the quark sector being the one related

to the present work.

Let us first note that the matrices U cancel out in all kinetic terms and in the interac-

tion terms between quarks and gluonic fields, because they are both chirally conserving

and flavour diagonal. The interaction terms with the electromagnetic (Aµ) and the neu-

tral weak mediator (Z0) fields remain unchanged too, for the same reason.

The only e�ect of the rotation is thus present in the charged weak currents which trans-

form as

Jµ† =
1⇥
2
ūL�

µdL � 1⇥
2
ūL�

µU †
uL
UdLdL . (1.30)

From this expression expression one defines the unitary Cabibbo-Kobayashi-Maskawa

(CKM) [18, 19] flavour mixing matrix as

U †
uL
UdL = VCKM . (1.31)

This matrix connects the interaction eigenstates (d�, s�, b�) with the mass eigenstates

(d, s, b):

�

⇧⇤
d�

s�

b�

⇥

⌃⌅ =

�

⇧⇤
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⇥

⌃⌅

�

⇧⇤
d

s

b

⇥

⌃⌅ . (1.32)

The mass eigenstates are di�erent from the interaction ones and the charged current

interactions mix di�erent flavours with weight Vij in the mass eigenstates basis. It

is worthwhile to underline that within the Standard Model the only flavour changing

mechanism is represented by this matrix and that there are no flavour changing neutral
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currents (FCNC) whose absence is ensured by the unitarity of VCKM .

In the case of three quark generations, the CKM matrix is a 3⇥ 3 unitary complex

matrix which depends on nine real numbers (9⇥2 = 18 real parameters with 9 unitarity

constraint relations). Exploiting the quark fields phase redefinition freedom (6 � 1 = 5

arbitrary phases) one concludes that VCKM depends only on 4 real parameters, three an-

gles and one phase, which, together with fermion masses, constitute the free parameters

of the flavour quark sector of the Standard Model.

Once the number of the independent physical parameters of this matrix is known,

one can introduce a set of di�erent parametrization for that matrix. The most natural

choice consists in writing the matrix as a product of three di�erent rotations

VCKM =

�

⇧⇤
1 0 0

0 c23 s23
0 �s23 c23

⇥

⌃⌅

�

⇧⇤
c13 0 s13e�i�

0 1 0

�s13ei� 0 c13

⇥

⌃⌅

�

⇧⇤
c12 s12 0

�s12 c12 0

0 0 1

⇥

⌃⌅ , (1.33)

which leads to

VCKM =

�

⇧⇤
c12c13 s12c13 s13e�i�

�s12c23 � c12c23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c13c23

⇥

⌃⌅ , (1.34)

where sij = sin ⇥ij, cij = cos ⇥ij (and ⇥12 is the Cabibbo angle) and � is the phase.

What is important to emphasize is that if � = 0 the matrix VCKM becomes real and one

has no CP violation in the quark sector too.

Another interesting feature of the matrix is that for a complex phase to be present

in the Standard Model the number of quark generations must be at least three. In

the old Cabibbo version of the theory, which involved only two generations (u, d) and

(c, s), the mixing matrix was a real rotation in flavour space and there was no room

for CP violation. Moreover in order for CP violation to appear, it is necessary that all

quark masses are di�erent because, if this is not the case, by means of suitable unitary

transformation, one could redefine the quark fields eliminating the CP violating phase.

It can be shown that the necessary condition for having CP violation is

(m2
t �m2

c)(m
2
t �m2

u)(m
2
u �m2

c)(m
2
b �m2

s)(m
2
b �m2

d)(m
2
d �m2

s)⇥ JCP ⇤= 0 (1.35)

where we have introduced the Jarlskog parameter [20]

JCP = s12s13s23c12c23c
2
13 sin � . (1.36)
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4 Leptonic and semileptonic kaon and pion decay and |Vud| and

|Vus|

This section summarises state-of-the art lattice calculations of the leptonic kaon and pion
decay constants and kaon the semileptonic decay form factor and provides an analysis in view
of the Standard Model. With respect to the previous edition of FLAG [1] the data in this
section has been updated, correlations of lattice data are now taken into account in all the
analysis and a sub-section on the individual decay constants fK and fπ (rather than only
the ratio) has been included. Furthermore, when combining lattice data with experimental
results we now take into account the strong SU(2) isospin correction in chiral perturbation
theory for the ratio of leptonic decay constants fK/fπ.

4.1 Experimental information concerning |Vud|, |Vus|, f+(0) and fK±/fπ±

The following review relies on the fact that precision experimental data on kaon decays very
accurately determine the product |Vus|f+(0) and the ratio |Vus/Vud|fK±/fπ± [2]:

|Vus|f+(0) = 0.2163(5) ,

∣

∣

∣

∣

Vus

Vud

∣

∣

∣

∣

fK±

fπ±
= 0.2758(5) . (1)

Here and in the following fK± and fπ± are the isospin broken decay constants, respectively, in
QCD (the electromagnetic effects have already been subtracted in the experimental analysis
using chiral perturbation theory). We will refer to the decay constants in the SU(2)-isospin
symmetric limit as fK and fπ. |Vud| and |Vus| are elements of the Cabibbo-Kobayashi-
Maskawa matrix and f+(t) represents one of the form factors relevant for the semileptonic
decay K0 → π−ℓ ν, which depends on the momentum transfer t between the two mesons.
What matters here is the value at t = 0: f+(0) ≡ fK0π−

+ (t)
t→0

. The pion and kaon decay

constants are defined by1

⟨0|dγµγ5 u|π+(p)⟩ = i pµfπ+ , ⟨0| sγµγ5 u|K+(p)⟩ = i pµfK+ .

In this normalization, fπ± ≃ 130 MeV, fK± ≃ 155 MeV.
The measurement of |Vud| based on superallowed nuclear β transitions has now become

remarkably precise. The result of the update of Hardy and Towner [8], which is based on 20
different superallowed transitions, reads2

|Vud| = 0.97425(22) . (2)

The matrix element |Vus| can be determined from semi-inclusive τ decays [15–18]. Sep-
arating the inclusive decay τ → hadrons + ν into non-strange and strange final states, e.g.

1The pion decay constant represents a QCD-matrix-element – in the full Standard Model, the one-pion
state is not a meaningful notion: the correlation function of the charged axial current does not have a pole at
p2 = M2

π+ , but a branch cut extending from M2
π+ to ∞. The analytic properties of the correlation function

and the problems encountered in the determination of fπ are thoroughly discussed in [3]. The “experimental”
value of fπ depends on the convention used when splitting the sum LQCD + LQED into two parts (compare
section 3.1). The lattice determinations of fπ do not yet reach the accuracy where this is of significance, but
at the precision claimed by the Particle Data Group [4], the numerical value does depend on the convention
used [3, 5–7].

2It is not a trivial matter to perform the data analysis at this precision. In particular, isospin breaking
effects need to be properly accounted for [9–13]. For a review of recent work on this issue, we refer to [14].
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Conclusions
✦ We presented Nf=2+1+1 results for the semileptonic form 

factors f+(q2) and f0(q2) and in particular their value at zero 
momentum transfer, f+(0), which allowed us to determine |Vus|  
 
 

✦ we quantify the q2-dependence of the form factors in terms of 
logC and Λ+ which are the parameters relevant to the 
comparison with the experimental results. 

 
 

✦ we plan to include also a global fit of the form factors based 
on hard-pion ChPT 

Future plans:
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Λ+ = 25.2(1.2)stat+fit (1.1)sist ×10
−3
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SU(2) ChPT

The first formula used to fit the q2, ml and a2 dependence of the vector and scalar form 
factor simultaneously is obtained(1) expanding in x the SU(3) NLO expressions found by 
G&L(2)

f+ (s) = F+ (s) 1+C+ (s)x +
MK

2

(4π f )2
− 3
4
x log x − xT1

+ (s)−T2
+ (s)⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

f0 (s) = F0 (s) 1+C0 (s)x +
MK

2

(4π f )2
− 3
4
x log x − xT1

0 (s)−T2
0 (s)⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

s = q2 /M 2
K x = M 2

π /M
2
K

F+,0 (s) =
F(a2, s)

1− q2

M 2
V ,S

C+,0 (s) = C +C (1)
+,0 s +C

(2)
+,0 s

2

f+ (0) = 0.9684(66)
f+ (0) = 0.9684(59)stat+fit (29)syst
logC = 0.1937(138)
logC = 0.1937(113)stat+fit (90)syst
Λ+ = 25.2(1.6) ×10

−3

Λ+ = 25.2(1.2)stat+fit (1.1)syst ×10
−3

logCEXP = 0.1985(70)
Λ+ EXP = 25.75(36) ×10

−3

f+ (0) = 0.9704(33) MILC
f+ (0) = 0.9684(38) RBC/UKQCD
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⎩
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⎬
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s = q2 /M 2
K x = M 2

π /M
2
K

F+,0 (s) =
F(a2, s)

1− q2

M 2
V ,S

C+,0 (s) = C +C (1)
+,0 s +C

(2)
+,0 s

2

f+ (0) = 0.9684(66)
f+ (0) = 0.9684(59)stat+fit (29)syst
logC = 0.1937(138)
logC = 0.1937(113)stat+fit (90)syst
Λ+ = 25.2(1.6) ×10

−3

Λ+ = 25.2(1.2)stat+fit (1.1)syst ×10
−3

logCEXP = 0.1985(70)
Λ+ EXP = 25.75(36) ×10

−3

f+ (0) = 0.9704(33) MILC
f+ (0) = 0.9684(38) RBC/UKQCD

(1)  [Lubicz et al. arXiv:1012.3573]

(2)   [Gasser Leutwyler NPB 1985]

SU(2) ChPT

Improved analysis of the scalar and vector form factors of kaon semileptonic decays L. Orifici

expanded in powers of x, keeping only the O(x), O(x log x) and O(log(1− s))terms. The functions
T 0,+1,2 (s) are then given by

T+
1 (s) = [(1− s) log(1− s)+ s(1− s/2)]3(1+ s)/4s2 ,
T+
2 (s) = [(1− s) log(1− s)+ s(1− s/2)] (1− s)2/4s2 ,
T 01 (s) = [log(1− s)+ s(1+ s/2)] (9+7s2)/4s2 ,
T 02 (s) = [(1− s) log(1− s)+ s(1− s/2)] (1− s)(3+5s)/4s2 . (3.2)

It can be seen that the coefficients of the pion chiral log in Eq. (3.1) are in agreement with those
predicted by SU(2) ChPT, both at q2 = 0 and q2 = q2max [9]. At q2 = 0 the leading chiral log has
the coefficient (−3/4), while close to q2 = q2max, i.e. for s ≃ (1−

√
x)2, the functions T 01,2(s) also

contribute to the chiral log leading, for f0(s), to an overall coefficient equal to (−11/4).
The functions F0,+(s) and C0,+(s) in Eq. (3.1) are not predicted by SU(2) chiral symmetry.

For F0(s), we include in our analysis the constraint coming from the CT theorem [3], which states
that the scalar form factor f0(q2) at the (unphysical) CT point, defined as q2CT =M2

K−M2
π , differs

from the ratio of the leptonic decay constants fK/ fπ by terms which are proportional to the light
quark masses, namely: f0(q2 =M2

K−M2
π) = fK/ fπ +O(mu,d). Therefore, in the SU(2) chiral limit

the scalar form factor f0(q2) at q2CT = q2max = M2
K coincides with the ratio of the leptonic decay

constants. Since the SU(2) chiral expansion of fK/ fπ is given at NLO by

fK
fπ

=
f 0K
f

[

1+Bx+
M2
K

(4π f )2
5
4
x logx

]

, (3.3)

where f 0K is the SU(2) chiral limit of fK , the CT theorem is equivalent to impose on F0(s) the
constraint

F0(s= 1) = f 0K/ f . (3.4)

Inspired by the vector-meson dominance, we then adopt a pole behavior for F0,+(s) and a polyno-
mial (quadratic) behavior for C0,+(s), namely

F0,+(s) = F/[1−λ0,+s], C0,+(s) =C+C(1)
0,+s+C

(2)
0,+s

2 . (3.5)

Finally, we take into account discretization effects by adding linear terms in a2 to the parameter
F and to the slopes λ0,+ of Eq. (3.5), as well as in the chiral expansion (3.3) of fK/ fπ . As in the
case of the first strategy, when we include in the fit all our data up to Mπ ∼ 580 MeV, we also add
in Eq. (3.1) a NNLO term of the form D0,+(s) x2, by expanding D0,+(s) =D+D(1)

0,+s+D(2)
0,+s

2.
Our analysis involves a total of 120 data points with 16 free parameters, and we obtain a good

quality fit with χ2/d.o. f . ≃ 0.8. The momentum dependence of the vector and scalar form factors
extrapolated (for the first time) at the physical point is shown in Fig. 3. The lattice results are also
compared in the plots with those obtained from a dispersive fit of the experimental data [4] from
KLOE, KTeV, NA48 (without muons branching ratios) and ISTRA+, based on the parametrization
of Ref. [17]. It can be clearly seen that our results are in good agreement with the data, in the whole
range of q2 spanned by the experiments.
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Extraction of the form factors
Extracting the vector and scalar current matrix elements in practice

Cµ
Kπ t, !p, ! ′p( ) Cµ

πK t, ! ′p , !p( )
Cµ

ππ t, ! ′p , ! ′p( ) Cµ
KK t, !p, !p( ) →

π ′p( ) Vµ K p( )( )2
4 pµ ′pµ

CS
Kπ t, !p, ! ′p( ) CS

πK t, ! ′p , !p( )
ZKZπ e

−(EK −Eπ )T /2
→

π ′p( ) S K p( )( )2
4EKEπ( )2



Results from the different fits

f+(0) logC ⇤+ ⇥ 10

3

SU(2) ChPT FSE type1 0.9696(49) 0.1894(053) 24.4(1.1)
SU(2) ChPT FSE type2 0.9693(49) 0.1901(052) 24.5(1.1)
z-expansion FSE type1 0.9702(70) 0.1864(142) 26.9(1.1)
z-expansion FSE type2 0.9704(78) 0.1868(195) 26.7(1.5)
SU(2) ChPT no f0 pole 0.9653(49) 0.2048(082) 24.4(1.1)

1


