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Outline

Introduction:

The chirally rotated Schrödinger functional in N = 2 slides.

Topics:

Renormalization of the non-singlet local currents for
Nf = 2 + 1 non-perturbatively O(a) improved Wilson-fermions.

Towards the non-perturbative computation of the RG-running
of a complete basis of ∆F = 2 four-quark operators.



The chirally rotated Schrödinger functional
A chiral rotation to the Schrödinger functional (Sint ’05, ’10)

Given the isospin doublets ψ and ψ satisfying standard SF b.c.’s,
we consider the chiral rotation,

ψ ≡ Rχ ≡ e i
π
2 γ5

τ 3

2 χ, ψ ≡ χR ≡ χe i
π
2 γ5

τ 3

2 .

The fields χ and χ satisfy the chirally rotated SF (χSF) b.c.’s,

Q̃+χ(x)|x0=0 = 0,

χ(x)Q̃+|x0=0 = 0,
Q̃± ≡ 1

2 (1± iγ0γ5τ
3),

which are invariant under the (rotated-)parity transformation,

P5 : χ(x)→ iγ0γ5τ
3 χ(x̃), χ(x)→ −iχ(x̃) γ0γ5τ

3, x̃ = (x0,−x).

Since R is a non-anomalous symmetry transformation of massless QCD,
in the continuum we expect the universality relations,

〈O[ψ,ψ]〉SF = 〈O[Rχ, χR]〉χSF.

On the lattice with Wilson-fermions these relations hold among properly
renormalized correlation functions, up to discretization effects!



The chirally rotated Schrödinger functional
Renormalization and O(a) improvement (Sint ’05, ’10)

For Wilson-fermions, the χSF b.c.’s are realized by fine-tuning a
finite dim. 3 boundary counterterm (e.g. at x0 = 0)

χQ̃−χ
R−→ −iψγ5τ

3P−ψ,

⇒ breaks parity and flavour symmetry: its coefficient, zf (g0), can
be fixed by imposing parity/flavour symmetry restoration.

Automatic (bulk) O(a) improvement:

⇒ NO bulk O(a) effects for P5-even obs. (O
P5−→ +O),

⇒ bulk O(a) effects are located in P5-odd obs. (O
P5−→ −O).

Full O(a) improvement needs in practice the tuning of a couple of
O(a) boundary counterterms. PT seems to be good! (Sint, Vilaseca ’12, ’14)

The set-up has been recently studied to 1-loop order in perturbation
theory, and for Nf = 2 dynamical fermions: (Sint, Vilaseca ’14; Sint, MDB ’14)

X Automatic O(a) improvement and universality.

X Competitive determinations of several finite renormalization
constants.



Renormalization in the χSF
The correlation functions we need . . . (Leder, Sint ’10)

SF:

fX (x0) = − 1
2 〈ψf1 (x)ΓXψf2 (x)Of2f1

5 〉,
kY (x0) = − 1

6

∑
k

〈ψf1 (x)ΓYk
ψf2 (x)Of2f1

k 〉,

χSF:

g f1f2
X (x0) = − 1

2 〈χf1 (x)ΓXχf2 (x)Qf2f1
5 〉,

l f1f2Y (x0) = − 1
6

∑
k

〈χf1 (x)ΓYk
χf2 (x)Qf2f1

k 〉,

where,

X = A0,V0,P,S ,

Yk = Ak ,Vk ,T0k , T̃0k .

and,

f1, f2 = u, d , u′d ′, f1 6= f2.

x0 = T

x0 = 0

C ′

C

L× L× L

X, Y

T

Bilinears of boundary
quark-fields

Of1f2
5 ,Of1f2

k
R−→ Qf1f2

5 ,Qf1f2
k



Renormalization in the χSF
Renormalization conditions from universality relations

Universality relations:

We consider P5-even correlation functions: (Ṽ ≡ conserved current)

(fA)R = (guu′

A )R = (−igud
V )R ⇒ ZA guu′

A = −igud
Ṽ

+ O(a2),

(kV )R = (luu
′

V )R = (−iludA )R ⇒ ZA l
ud
A = iluu

′

Ṽ
+ O(a2).

Renormalization conditions: (Leder, Sint ’10; Sint, MDB ’14)

The universality relations suggest to us simple renormalization conditions
for the definition of ZA, e.g.,

Z g
A ≡

−igud
Ṽ

(x0)

guu′
A (x0)

∣∣∣∣
x0=

T
2

, Z l
A ≡

iluu
′

Ṽ
(x0)

ludA (x0)

∣∣∣∣
x0=

T
2

.

N.B.: The ZA’s so obtained are fully O(a) improved:

NO need for O(a) operator improvement i.e. cA(g0) or cṼ (g0).

O(a) boundary effects cancel out in the ratios.



Renormalization in the χSF
Renormalization conditions from universality relations

Universality relations:

We consider P5-even correlation functions: (Ṽ ≡ conserved current)

(fA)R = (guu′

A )R = (−igud
V )R ⇒ ZV gud

V = gud
Ṽ

+ O(a2),

(kV )R = (luu
′

V )R = (−iludA )R ⇒ ZV luu
′

V = luu
′

Ṽ
+ O(a2).

Renormalization conditions: (Leder, Sint ’10; Sint, MDB ’14)

The universality relations suggest to us simple renormalization conditions
for the definition of ZV , e.g.,

Z g
V ≡

gud
Ṽ

(x0)

gud
V (x0)

∣∣∣∣
x0=

T
2

, Z l
V ≡

luu
′

Ṽ
(x0)

luu
′

V (x0)

∣∣∣∣
x0=

T
2

.

N.B.: The ZV ’s so obtained are fully O(a) improved:

NO need for O(a) operator improvement i.e. cV (g0) or cṼ (g0).

O(a) boundary effects cancel out in the ratios.



Renormalization in the χSF
Renormalization conditions from universality relations

Universality relations:
We consider P5-even correlation functions:

(fP)R = (iguu′

S )R = (gud
P )R ⇒ ZS ig

uu′

S = ZPg
ud
P + O(a2),

(kT )R = (iluu
′

T̃
)R = (ludT )R ⇒ ZT̃ iluu

′

T̃
= ZT l

ud
T + O(a2).

Renormalization conditions: (Leder, Sint ’10; Sint, MDB ’14)

The universality relations suggest to us simple renormalization conditions
for the definition of ZP/ZS , or ZT/ZT̃ , e.g.,

ZP

ZS
≡ iguu′

S (x0)

gud
P (x0)

∣∣∣∣
x0=

T
2

,
ZT

ZT̃

≡
iluu

′

T̃
(x0)

ludT (x0)

∣∣∣∣
x0=

T
2

.

N.B.: The finite ratios so obtained are fully O(a) improved:

NO need for O(a) operator improvement i.e. cT (g0) or cT̃ (g0).

O(a) boundary effects cancel out in the ratios.



Adding strangeness . . .
Lattice action and other details

Question: How do we get Nf = 2 + 1?

Answer: We consider 2 χSF + 1 SF Wilson-fermions. (Sint ’10)

What’s new?

O(a) improved determinations now require an improved bulk action.

⇒ This has to be considered in any case (s. below)!

Twice as many O(a) boundary counterterm coefficients to be tuned.

⇒ They all do not contribute to ZA,ZV , . . ., at O(a), we are grand!

If renormalization conditions are defined only in terms of χSF fields,
NO need for O(a) operator improvement!

Lattice action (cf. CLS) (S. Schaefer’s talk; Bruno, et. al. ’14)

Fermionic action: Nf=2+1 NPT O(a) improved Wilson-fermions.

Gauge action: Tree-level O(a2) improved Lüscher-Weisz action.

χSF-specific: T = L; C = C ′ = 0; ct @ 1-loop; ds , c̃t @ tree-level.



Line of constant physics
Renormalization conditions in a fixed topological sector

LCP:

β Ltrg/a L/a

3.40 8 6, 8, 10, 12
3.46 9.04 6, 8, 10, 12
3.55 10.76 8, 10, 12, 16
3.70 13.89 8, 10, 12, 16

β tsym0 /a2 a (fm)

3.40 2.8468(61) ≈ 0.08
3.46 3.635(31) ≈ 0.07
3.55 5.150(23) ≈ 0.06
3.70 8.555(23) ≈ 0.05

Renormalization conditions: (Fritzsch, Ramos, Stollenwerk ’14)

mcrit : mPCAC =
∂0g

ud
A,0(x0)

2gud
P,0(x0)

∣∣∣∣
x0=

T
2

!
= 0; zf : gud

A,0(x0)|
x0=

T
2

!
= 0;

Z g
A ≡

−igud
Ṽ ,0

(x0)

guu′
A,0 (x0)

∣∣∣∣
x0=

T
2

, 〈O0〉 ≡ 〈O · δQc ,0〉.

NOTE: Qc is the topological charge defined through the gradient flow,
evaluated at c =

√
8t/L = 0.6.



Determination of ZA at β = 3.55
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Determination of ZV at β = 3.70

 0.758

 0.764

 0.0025  0.0065  0.0105  0.0145

(a/L)
2

Z
g
V

Z
l
V



Renormalization constants
Comparison between two different definitions of ZA as a function of g 2
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Renormalization constants
Comparison between two different definitions of ZV as a function of g 2
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Test of universality
Continuum limit extrapolations of ZV ,A differences
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Results for ZP/ZS
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Renormalization of ∆F = 2 four quark-operators
First steps towards the non-perturbative running in the Nf = 2 + 1 theory?

Start: The χSF allows for finite-volume, mass-independent
renormalization schemes, compatible with auto. O(a) improvement.

⇒ Step 1. Identify valuable schemes within PT; both in terms of
anomalous dimensions, as well as cutoff effects in the SSFs. (P. Vilaseca’s talk)

⇒ Step 2. Feasibility study for a NPT determination of the running
using Nf = 2 NPT O(a) improved Wilson-fermions. (Della Morte et. al. ’05)

Renormalization conditions:

Gi ;α = N−1
α

〈
O′5QiO5

〉
Li ;α = N−1

α

〈
O′k QiOk

〉
Nα = gα1

1 lα2
1 gα2

Ṽ
lα3

Ṽ

(
Z22 Z23

Z32 Z33

)(
G2;α L2;β

G3;α L3;β

)
=

(
G2;α L2;β

G3;α L3;β

)
g0=0

.

Step-scaling function (SSF):

σ(u) = lim
a→0

Σ(u, a/L), Σ(u, a/L) = Z(g0, 2L/a)Z−1(g0, L/a)
∣∣
u=ḡ2(L)

.



Renormalization of Q+
1

Continuum limit extrapolation for the lattice step-scaling function for ḡ 2(L) = 3.3
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Renormalization of Q−2 , and Q−3
Continuum limit extrapolations for the lattice step-scaling functions for ḡ 2(L) = 3.3
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Outlook

Outlook:

Little extra work is needed to finalize the results for ZV , and ZA.

The ensembles generated can be used for several other purposes:
ZP/ZS , low-energy matchings, . . .

Still a lot to do and to understand for the non-perturbative running
of four-quark operators:

⇒ crucial to understand whether perturbation theory at NLO
provides a good picture of the high-energy regime we can reach.

⇒ make use of several different schemes to improve the
determination of the RGI-operators.

. . . while we are thinking computers are running!

Investigate other applications of the χSF, as for example the
determination of some improvement coefficients.




