Heavy-heavy current improvement for calculating $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ semi-leptonic form factors from Oktay-Kronfeld quarks

Jon A. Bailey, Yong-Chull Jang, Weonjong Lee, Jaehoon Leem SWME Collaboration

Abstract

We are improving heavy-heavy currents for calculating $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ semi- leptonic form factors with Oktay-Kronfeld(OK) heavy quarks. The OK action, which has dimension 6 and 7 interaction terms, can control the discretization errors of heavy quarks (b and c quarks). The OK action is improved through third order in HQET power counting. We report work on heavy-heavy currents to get the systematic improvement of the hadronic matrix elements for $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ processes with the OK action.

Physical Motivation

- Decay rate for $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ are proportional to $\left|V_{c b}\right|^{2}$.

$$
\begin{aligned}
\frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}\right) & =\left|V_{c b}\right|^{2} F_{D^{(*)}}(w)^{2} \times \text { Const. } \\
& \times \text { electroweak. } \times \text { kinematic term } .
\end{aligned}
$$

- By calculating semi-leptonic form factors $h_{ \pm}(w), h_{A_{i}}(w), h_{V}(w)$ from lattice, we can determine $\left|V_{c b}\right|$ using experimental measurements of decay rate. $F_{D^{(*)}}(w)^{2}$ is expressed in terms of $h_{ \pm}(w), h_{A_{i}}(w), h_{V}(w)$.

$$
\begin{aligned}
\frac{\left\langle D\left(p_{D}\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle}{\sqrt{M_{D} M_{B}}} & =\left(v_{B}+v_{D}\right)^{\mu} h_{+}(w)+\left(v_{B}-v_{D}\right)^{\mu} h_{-}(w) \\
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon\right)\right| A^{\mu}\left|B\left(p_{B}\right)\right\rangle}{\sqrt{M_{D^{*}} M_{B}}} & =i\left[\epsilon^{* \mu} h_{A_{1}}(w)(1+w)-\left(\epsilon^{*} \cdot v_{B}\right)\left(v_{B}^{\mu} h_{A_{2}}(w)+v_{D^{*}}^{\mu} h_{A_{3}}(w)\right)\right] \\
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle}{\sqrt{M_{D^{*}} M_{B}}} & =\varepsilon^{\mu \nu \rho \sigma} \epsilon_{\nu}^{*}\left(v_{B}\right)_{\rho}\left(v_{D^{*}}\right)_{\sigma} h_{V}(w),
\end{aligned}
$$

where v_{B} and v_{D} is hadron velocity and $w=v_{B} \cdot v_{D}$.

Improvement of Lattice Gauge Theory

- We can reduce discretization error systematically in arbitrary $m_{q} a$ with the Wilson fermion by allowing an asymmetry between temporal \& spatial interaction, and retaining Wilson's time derivative. [1]
- For heavy quark ($m_{q} a \simeq 1$), we may interpret Wilson fermion non-relativistically, and match lattice gauge theory to continuum QCD through HQET. $\left(\delta \mathcal{C}_{i}=\mathcal{C}_{i}^{\text {lat }}-\mathcal{C}_{i} \rightarrow 0\right)[2,3,4]$

$$
\begin{align*}
\mathcal{L}_{\text {lat }}^{\text {heavy }} & \doteq-\bar{h}\left(D_{4}+m_{1 h}\right) h+\sum_{i} \mathcal{C}_{i}^{\text {lat }} \mathcal{O}_{i} \tag{1}\\
\mathcal{L}_{\text {cont }}^{\text {heavy }} & \doteq-\bar{h}\left(D_{4}+m_{h}\right) h+\sum_{i} \mathcal{C}_{i} \mathcal{O}_{i} \tag{2}
\end{align*}
$$

where $m_{1 h}$ is rest mass of lattice heavy quark, and \mathcal{O}_{i} is operator in heavy quark effective theory (HQET).

Matching

- We can match lattice gauge theory to continuum QCD by calculating on-shell matrix elements. There are two strategies for that.

QCD

HQET

Lattice QCD

LHQET

Figure: Matching process. HQET (LHQET) is heavy-quark effective theory matched to underlying continuum (lattice) QCD.

- Compare on-shell matrix elements of lattice and continuum QCD in the desired order of HQET expansion: Case (1)
- First, match (lattice) QCD to heavy-quark effective theory to obtain (LHQET) HQET couplings. Then set LHQET couplings to the HQET values: Case (2)

Improvement of Lattice Gauge Theory - Action

- Fermilab action.[1]

$$
\begin{aligned}
S_{0} & =m_{0} a^{4} \sum_{x} \bar{\psi}(x) \psi(x) \\
& +a^{4} \sum_{x} \bar{\psi}(x) \gamma_{4} D_{4 \mathrm{lat}} \psi(x)+\zeta a^{4} \sum_{x} \bar{\psi}(x) \vec{\gamma} \cdot \vec{D}_{\mathrm{lat}} \psi(x) \\
& -\frac{1}{2} a^{5} \sum_{x} \bar{\psi}(x) \Delta_{4 \mathrm{lat}} \psi(x)-\frac{1}{2} r_{s} \zeta a^{5} \sum_{x} \bar{\psi}(x) \Delta_{\mathrm{lat}}^{(3)} \psi(x)
\end{aligned}
$$

- Dimension-five interactions.

$$
\begin{aligned}
& S_{B}=-\frac{1}{2} c_{B} \zeta a^{5} \sum_{x} \bar{\psi}(x) i \vec{\Sigma} \cdot \vec{B}_{\mathrm{lat}} \psi(x) \\
& S_{E}=-\frac{1}{2} c_{E} \zeta a^{5} \sum_{x} \bar{\psi}(x) \vec{\alpha} \cdot \vec{E}_{\mathrm{lat}} \psi(x)
\end{aligned}
$$

- c_{B}, c_{E} : fixed by matching one-gluon vertex for the interaction with background field.

Improvement of Lattice Gauge Theory - Action

- Oktay-Kronfeld(OK) action [3] contains six more non-zero couplings at dimension 6 and 7 to improve in the level of $\mathcal{O}\left(\lambda^{3}\right)$. ($\lambda \sim a \Lambda, \Lambda / m_{h}$) at tree-level.

$$
\begin{aligned}
S_{6} & =c_{1} a^{6} \sum_{x} \bar{\psi}(x) \sum_{i} \gamma_{i} D_{\text {ilat }} \Delta_{i \mathrm{lat}} \psi(x) \\
& +c_{2} a^{6} \sum_{x} \bar{\psi}(x)\left\{\vec{\gamma} \cdot \vec{D}_{\mathrm{lat}}, \Delta_{\mathrm{lat}}^{(3)}\right\} \psi(x) \\
& +c_{3} a^{6} \sum_{x} \bar{\psi}(x)\left\{\vec{\gamma} \cdot \vec{D}_{\mathrm{lat}}, i \vec{\Sigma} \cdot \vec{B}_{\mathrm{lat}}\right\} \psi(x) \\
& +c_{E E} a^{6} \sum_{x} \bar{\psi}(x)\left\{\gamma_{4} D_{4 \mathrm{lat}}, \vec{\alpha} \cdot \vec{E}_{\mathrm{lat}}\right\} \psi(x) \\
S_{7} & =a^{7} \sum_{x} \bar{\psi}(x) \sum_{i}\left[c_{4} \Delta_{i \mathrm{lat}}^{2} \psi(x)+c_{5} \sum_{j \neq i}\left\{i \Sigma_{i} B_{i \mathrm{lat}}, \Delta_{j \mathrm{lat}}\right\}\right] \psi(x)
\end{aligned}
$$

- Coefficients c_{i} are fixed by matching dispersion relation, one-gluon vertex, Compton scattering.

Improvement of Lattice Gauge Theory - Current

- The improved lattice operator can be constructed by linear combination of lattice operators with the same quantum number as continuum operator.
- In the case of flavor-changing bilinear,

$$
\bar{c} \Gamma b=Z_{\Gamma}\left[\bar{\psi}_{c} \Gamma \psi_{b}+\sum_{d \geq 4} \sum_{i} C_{\Gamma i}^{d} O_{\Gamma i}^{d}\right]
$$

Z_{Γ} : matching factor.
$\bar{c} \Gamma b$: continuum bilinear.
$\bar{\psi}_{c} \Gamma \bar{\psi}_{b}$: leading lattice bilinear.
$O_{\Gamma i}^{d}$: higher dimensional lattice operator with dimension d.

- By matching on-shell matrix elements, we can obtain coefficients Z_{Γ} and $C_{\Gamma i}^{d}$.
- We need improved current in the level of $\mathcal{O}\left(\lambda^{3}\right)$ in HQET power counting.

Improvement of Lattice Current - $\mathcal{O}(\lambda)$ case

- Consider following continuum matrix element at tree-level,

$$
\left\langle c\left(\eta_{c}, \vec{p}_{c}\right)\right| \bar{c} \Gamma b\left|b\left(\eta_{b}, \vec{p}_{b}\right)\right\rangle \rightarrow \sqrt{\frac{m_{c}}{E_{c}}} \sqrt{\frac{m_{b}}{E_{b}}} \bar{u}_{c}\left(\eta_{c}, \vec{p}_{c}\right) \Gamma u_{b}\left(\eta_{b}, \vec{p}_{b}\right),
$$

- For the lattice [1],

$$
\left\langle c\left(\eta_{c}, \vec{p}_{c}\right)\right| \bar{\psi}_{c} \Gamma \psi_{b}\left|b\left(\eta_{b}, \vec{p}_{b}\right)\right\rangle \rightarrow \mathcal{N}_{c}\left(\vec{p}_{c}\right) \mathcal{N}_{b}\left(\vec{p}_{b}\right) \bar{u}_{c}^{\text {lat }}\left(\eta_{c}, \vec{p}_{c}\right) \Gamma u_{b}^{\text {lat }}\left(\eta_{b}, \vec{p}_{b}\right),
$$

where $\mathcal{N}(\vec{p})$ is lattice normalization factor for external state.

- Expand continuum and lattice spinor for small spatial momentum (compared to $1 / a$ or m) gives [1],

$$
\begin{gathered}
\sqrt{\frac{m}{E}} u(\eta, \vec{p})=\left[1-\frac{i \vec{\gamma} \cdot \vec{p}}{2 m}\right] u(\eta, 0)+\mathcal{O}\left(\frac{\vec{p}^{2}}{m^{2}}\right), \\
\mathcal{N}(\vec{p}) u^{\mathrm{lat}}(\eta, \vec{p})=e^{-M_{1} a / 2}\left[1-\frac{\zeta i \vec{\gamma} \cdot \vec{p} a}{2 \sinh M_{1} a}\right] u(\eta, 0)+\mathcal{O}\left(\vec{p}^{2} a^{2}\right),
\end{gathered}
$$

where the tree-level rest mass $M_{1} a=\log \left(1+m_{0} a\right)$.

Improvement of Lattice Current - $\mathcal{O}(\lambda)$ case

- At the zeroth order in momentum \vec{p}_{b} and \vec{p}_{c}, continuum and lattice matrix elements are different by tree-level matching factor,

$$
Z_{\Gamma}^{[0]}=e^{M_{1 b} a / 2+M_{1 c} a / 2}
$$

- At the first order in momentum \vec{p}_{b} and \vec{p}_{c}, there is mismatch between lattice and continuum matrix elements. There need dimension four lattice bilinears to match the matrix elements.

$$
O_{\Gamma 1}^{4}=\bar{\psi}_{c} \Gamma \vec{\gamma} \cdot \vec{D} \psi_{b}, \quad O_{\Gamma 2}^{4}=\bar{\psi}_{c} \vec{\gamma} \cdot \vec{D} \Gamma \psi_{b} .
$$

- By defining field rotation [1, 2],

$$
Q_{h}=e^{M_{1 h} a / 2}\left[1+a d_{1 h} \vec{\gamma} \cdot \vec{D}_{\mathrm{lat}}\right] \psi_{h},
$$

we can obtain improved quark-quark matrix elements by adjusting $d_{1 h}$,

$$
\bar{c} \Gamma b=\bar{Q}_{c} \Gamma Q_{b} \Longleftrightarrow d_{1 h}=\frac{\zeta}{2 \sinh M_{1 h} a}-\frac{1}{2 m_{h} a} . \quad(h=b, c)
$$

Improvement of Lattice Current - $\mathcal{O}(\lambda)$ case

- We show how to use HQET matching to demonstrate improvement in the current at $\mathcal{O}(\lambda)$.
- Flavor-changing vector current can be described by, [2]

$$
V^{\mu} \doteq \bar{C}_{V_{\|}} v^{\mu} \bar{c}_{v^{\prime}} b_{v}+\bar{C}_{V_{\perp}} \bar{c}_{v^{\prime}} i \gamma_{\perp}^{\mu} b_{v}+\bar{C}_{V_{v^{\prime}}} v_{\perp}^{\prime \mu} \bar{c}_{v^{\prime}} b_{v}-\sum_{i} \bar{B}_{V_{i}} \overline{\mathcal{Q}}_{V_{i}}^{\mu}
$$

where $\ell_{\perp}^{\mu}=\ell^{\mu}+v^{\mu} v \cdot \ell$, for arbitrary vector $\ell^{\mu} .\left(v^{2}=-1\right)$ $\overline{\mathcal{Q}}_{V_{i}}^{\mu}$: dimension 4 operators.

- For the lattice, we can describe bilinear with the right quantum numbers of flavor-changing vector currents in the basis of HQET operators.[2]

$$
V_{\text {lat }}^{\mu} \doteq \bar{C}_{V_{\|}}^{\text {at }} v^{\mu} \bar{c}_{v^{\prime}} b_{v}+\bar{C}_{V_{\perp}}^{\mathrm{lat}} \bar{c}_{v^{\prime}} i \gamma_{\perp}^{\mu} b_{v}+\bar{C}_{V_{v^{\prime}}}^{\text {at }}{ }_{\perp}^{\prime \mu} \bar{c}_{v^{\prime}} b_{v}-\sum_{i} \bar{B}_{V_{i}}^{\mathrm{lat}} \overline{\mathcal{Q}}_{V_{i}}^{\mu}
$$

- The matching between QCD and lattice vector current is obtained by $\delta \bar{B}_{V_{i}}=\bar{B}_{V_{i}}-Z_{V_{i}} \bar{B}_{V_{i}}^{\text {lat }}=0$, where

$$
\begin{array}{lll}
Z_{V_{i}}=\bar{C}_{V_{\perp}} / \bar{C}_{V_{\perp}}^{\text {at }} & \text { when } & \overline{\mathcal{Q}}_{V_{i}}^{\mu} \perp v^{\mu}, \\
Z_{V_{i}}=\bar{C}_{V_{\|}} / \bar{C}_{V_{\|}}^{\text {lat }} & \text { when } & \overline{\mathcal{Q}}_{V_{i}}^{\mu} \| v^{\mu}
\end{array}
$$

Improvement of Lattice Current - $\mathcal{O}(\lambda)$ case

- We can define $V_{\text {lat }}^{\mu}$ in terms of the rotated field Q_{h} and dimension four lattice operators $O_{V_{i}}^{\mu}$. [2]

$$
V_{\mathrm{lat}}^{\mu}=\bar{Q}_{c} i \gamma^{\mu} Q_{b}-\sum_{i} b_{V_{i}} O_{V_{i}}^{\mu} .
$$

- By matching $V_{\text {lat }}^{\mu}$ to the HQET operators, one can obtain $\bar{B}_{V_{i}}^{\text {lat }}$ in terms of $b_{V_{i}}$ and $d_{1 h}$.
- We can make $\delta \bar{B}_{V_{i}}=0$ while keeping all $b_{V_{i}}=0$, if we adjust $d_{1 h}$,

$$
d_{1 h}=\frac{\zeta}{2 \sinh M_{1 h} a}-\frac{1}{2 m_{h} a} . \quad(h=b, c)
$$

Improvement of Lattice Current - $\mathcal{O}\left(\lambda^{3}\right)$ case

- For λ^{3} improvement, we define field rotation as follows [5], $(a=1)$

$$
\begin{aligned}
Q(x)= & e^{M_{1} / 2}\left[1+d_{1} \vec{\gamma} \cdot \vec{D}_{\text {lat }}+\frac{1}{2} d_{2} \Delta_{\text {lat }}^{(3)}+\frac{1}{2} i d_{B} \vec{\Sigma} \cdot \vec{B}_{\text {lat }}+\frac{1}{2} d_{E} \vec{\alpha} \cdot \vec{E}_{\text {lat }}\right. \\
& +\frac{1}{4} d_{r_{E}}\left\{\vec{\gamma} \cdot \vec{D}_{\text {lat }}, \vec{\alpha} \cdot \vec{E}_{\text {lat }}\right\}+\frac{1}{4} d_{z_{E}} \gamma_{4}\left(\vec{D}_{\text {lat }} \cdot \overrightarrow{\mathrm{l}}_{\text {lat }}-\vec{E}_{\text {lat }} \cdot \vec{D}_{\text {lat }}\right) \\
& +\frac{1}{6} d_{3} \gamma_{i} D_{\text {ilat }} \Delta_{\text {ilat }}+\frac{1}{2} d_{4}\left\{\vec{\gamma} \cdot \vec{D}_{\text {lat }}, \Delta_{\text {lat }}^{(3)}\right\}+\frac{1}{4} d_{5}\left\{\vec{\gamma} \cdot \vec{D}_{\text {lat }}, i \vec{\Sigma} \cdot \vec{B}_{\text {lat }}\right\} \\
& \left.+\frac{1}{4} d_{E E}\left\{\gamma_{4} D_{\text {llat }}, \vec{\alpha} \cdot \vec{E}_{\text {lat }}\right\}+\frac{1}{4} d_{z_{3}} \vec{\gamma} \cdot\left(\vec{D}_{\text {lat }} \times \vec{B}_{\text {lat }}+\vec{B}_{\text {lat }} \times \vec{D}_{\text {lat }}\right)\right] \psi(x)
\end{aligned}
$$

- And define flavor-changing vector and axial vector current.

$$
\begin{aligned}
V_{I}^{\mu} & =\bar{Q}_{c} i \gamma^{\mu} Q_{b} \\
A_{I}^{\mu} & =\bar{Q}_{c} i \gamma^{\mu} \gamma_{5} Q_{b} .
\end{aligned}
$$

- Then, obtaining improved flavor-changing currents is equivalent to obtaining parameters d_{i} which suffice to match to continuum QCD.

Matching Calculation I

- $\left\langle c\left(\eta_{c}, \vec{p}_{c}\right)\right| V_{I}^{\mu}\left|b\left(\eta_{b}, \vec{p}_{b}\right)\right\rangle_{\text {lat }}=\left\langle c\left(\eta_{c}, \vec{p}_{c}\right)\right| V^{\mu}\left|b\left(\eta_{b}, \vec{p}_{b}\right)\right\rangle_{\text {cont }}$ At tree-level [1],

$$
\begin{aligned}
& \rightarrow \mathcal{N}_{c}\left(\vec{p}_{c}\right) \mathcal{N}_{b}\left(\vec{p}_{b}\right) \bar{u}_{c}^{\text {lat }}\left(\eta_{c}, \vec{p}_{c}\right) \bar{R}_{c}\left(\vec{p}_{c}\right) i \gamma^{\mu} R_{b}\left(\vec{p}_{b}\right) u_{b}^{\text {lat }}\left(\eta_{b}, \vec{p}_{b}\right) \\
& =\sqrt{\frac{m_{c}}{E_{c}}} \sqrt{\frac{m_{b}}{E_{b}}} \bar{u}_{c}\left(\eta_{c}, \vec{p}_{c}\right) i \gamma^{\mu} u_{b}\left(\eta_{b}, \vec{p}_{b}\right),
\end{aligned}
$$

where $R(\vec{p})$ is the rotation vertex of improved current.

- Expand continuum and lattice spinor in $\mathcal{O}\left(\vec{p}^{3}\right)$ [5], $(a=1)$

$$
\begin{aligned}
\sqrt{\frac{m_{h}}{E}} u(\eta, \vec{p}) & =\left[1-\frac{i \vec{\gamma} \cdot \vec{p}}{2 m}-\frac{\vec{p}^{2}}{8 m^{2}}+\frac{3 i(\vec{\gamma} \cdot \vec{p}) \vec{p}^{2}}{16 m^{3}}\right] u(\eta, 0)+\mathcal{O}\left(\vec{p}^{4}\right) \\
\mathcal{N}(\vec{p}) u^{\text {lat }}(\eta, \vec{p}) & =\left[1-\frac{i \zeta \vec{\gamma} \cdot \vec{p}}{2 \sinh M_{1}}-\frac{\vec{p}^{2}}{8 M_{X}^{2}}+\frac{1}{6} i w_{3} \sum_{k=1}^{3} \gamma_{k} p_{k}^{3}+\frac{3 i(\vec{\gamma} \cdot \vec{p}) \vec{p}^{2}}{16 M_{Y}^{3}}\right] u(\eta, 0) \\
& +\mathcal{O}\left(\vec{p}^{4}\right)
\end{aligned}
$$

Matching Calculation I

- M_{X}, M_{Y}, and rotation breaking parameter w_{3} are expressed by couplings of action $[1,5]$,

$$
\begin{aligned}
\frac{1}{M_{X}^{2}} & =\frac{\zeta^{2}}{\sinh ^{2} M_{1}}+\frac{2 r_{s} \zeta}{e^{M_{1}}}, \quad w_{3}=\frac{3 c_{1}+\zeta / 2}{\sinh M_{1}} \\
\frac{1}{M_{Y}^{3}} & =\frac{8}{3 \sinh M_{1}}\left\{2 c_{2}+\frac{1}{4} e^{-M_{1}}\left[\zeta^{2} r_{s}\left(2 \operatorname{coth} M_{1}+1\right)\right.\right. \\
& \left.\left.+\frac{\zeta^{3}}{\sinh M_{1}}\left(\frac{e^{-M_{1}}}{2 \sinh M_{1}}-1\right)\right]+\frac{\zeta^{3}}{4 \sinh ^{2} M_{1}}\right\}
\end{aligned}
$$

- The rotation vertex remedies mismatch of continuum and lattice spinor in order $\mathcal{O}\left(\vec{p}^{3}\right)$.
\rightarrow obtain $d_{1}, d_{2}, d_{3}, d_{4}$.

Matching Calculation II

- To obtain rotation parameters other than $d_{1}, d_{2}, d_{3}, d_{4}$, we are considering matrix elements.

$$
\left\langle q\left(\eta_{2}, \vec{p}_{2}\right) c\left(\eta_{c}, \vec{p}_{c}\right)\right| V_{I}^{\mu}\left|b\left(\eta_{b}, \vec{p}_{b}\right) q\left(\eta_{1}, \vec{p}_{1}\right)\right\rangle_{\text {lat }}
$$

Figure: A diagram for gluon exchange from the OK action one-gluon vertex of b-quark for improved flavor-changing current at tree-level. The large circles represent electroweak current insertions, and the small dots represent field rotation.

- The matching equation for the one-gluon exchange from b-quark line is given by,

$$
\begin{aligned}
& n_{\nu}(k) \mathcal{N}\left(\vec{p}_{c}\right) \mathcal{N}\left(\vec{p}_{b}\right) \bar{u}^{\text {lat }}\left(\eta_{c}, \vec{p}_{c}\right) \bar{R}\left(\vec{p}_{c}\right) i \gamma_{\mu} \\
& {\left[R\left(\vec{p}_{b}\right) S^{\text {lat }}\left(p_{b}+k\right) \Lambda_{\nu}\left(p_{b}+k, p_{b}\right)\right.} \\
& \left.+R_{\nu}\left(p_{b}+k\right)\right] u^{\text {lat }}\left(\eta_{b}, \vec{p}_{b}\right) \\
& =\sqrt{\frac{m_{c}}{E_{c}}} \sqrt{\frac{m_{b}}{E_{b}}} \\
& \times \bar{u}\left(\eta_{c}, \vec{p}_{c}\right) i \gamma_{\mu} S^{\text {cont }}\left(p_{b}+k\right) \gamma_{\nu} u\left(\eta_{b}, \vec{p}_{b}\right) .
\end{aligned}
$$

$n_{\nu}(k)=\frac{(2 / a) \sin \left(k_{\nu} / a\right)}{k_{\nu}}, \nu=i$ or 4.
R_{ν} : one-gluon vertex of field rotation.
Λ_{ν} : one-gluon vertex of OK-action.

Summary

- $d_{i}(i=1,2,3,4)$ results at tree-level are given in [5].
- We are caclulating the other rotation parameters to complete $\mathcal{O}\left(\lambda^{3}\right)$ current improvement by calculating four-quark matrix element.

$$
\left\langle q\left(\eta_{2}, \vec{p}_{2}\right) c\left(\eta_{c}, \vec{p}_{c}\right)\right| V_{I}^{\mu}\left|b\left(\eta_{b}, \vec{p}_{b}\right) q\left(\eta_{1}, \vec{p}_{1}\right)\right\rangle .
$$

- We are enumerating dimension five and six HQET operators to verify the currents constructed with the rotated fields are improved through $\mathcal{O}\left(\lambda^{3}\right)$ in HQET.

Bibliography

[1] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie, "Massive fermions in lattice gauge theory," Phys. Rev. D, vol. 55, Apr 1997.
[2] J. Harada, S. Hashimoto, A. S. Kronfeld, and T. Onogi, "Application of heavy-quark effective theory to lattice qcd. iii. radiative corrections to heavy-heavy currents," Phys. Rev. D, vol. 65, May 2002.
[3] M. B. Oktay and A. S. Kronfeld, "New lattice action for heavy quarks," Phys. Rev. D, vol. 78, Jul 2008.
[4] A. S. Kronfeld, "Application of heavy-quark effective theory to lattice qcd: Power corrections," Phys. Rev. D, vol. 62, Jun 2000.
[5] J. A. Bailey, Y.-C. Jang, W. Lee, and J. Leem, "Improved currents for $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ form factors from Oktay-Kronfeld heavy quarks," PoS, vol. LATTICE2014, 2014.

